Example for articulate reasons and construct arguments, Mathematics

Assignment Help:

A Class 4 teacher was going to teach her class fractions. At the beginning of the term she asked the children, "If you had three chocolates, and wanted to divide them equally among five people, how would you do it?" Most of the children could think of one or more ways of doing this. By the end of the term, when the children had been taught how to deal with fractions, the teacher again asked them the same question. And this time, most of the children couldn't do it! Instead of reality and their own common sense, they now had "rules", which they could never understand or remember how to apply.

 Reversibility: the principle that action taken on objects, if reversed in sequence, will return the object to its original state.

 Conservation: the principle that quantity (number, mass, liquid) remains the same regardless of the spatial shape it may assume.

This example reminds us that only supplying readymade rules to children, without explaining why the rules work, usually blocks their thinking. Often, if children are encouraged to see patterns themselves, they find it easy to accept the formal rules of arithmetic that you may be trying to teach them.

Coming to symbols, various experimental studies show that even children as old as 9 have difficulty in representing the operations of addition and subtraction (+ and - signs). Most primary schoolchildren are uncomfortable with the conventional operator signs of arithmetic. This is because symbols (and algorithms, etc.) are taught in a way that makes no sense to the children, as they are not related to the children's reality. Therefore, the mechanics of dealing with the symbols, etc., doesn't interest them.

What can we do to help our learners acquire abstract concepts? To begin with, we mast remember that no amount of explanation will enable any of us to relate an unfamiliar symbol system with reality. We must go the other way, that is, from concrete examples to the symbol system. Relating abstract concepts and symbols to the everyday experiences of our learners seems to be the easiest way to learn/teach them. Indeed, we all learn this way. Or don't we? Try the following activity and judge for yourself.

E1) Add 4 and 5 in base 5. What processes did you follow in making sense of this task? What difficulties did you face? Do you think the task of a learner beginning to learn mathematics is more or less difficult than this?

While doing this exercise, how much of the difficulty that you faced was because you felt that you didn't have enough previous knowledge to do the task? The point brought out by this question is important, namely, the readiness of the learner to comprehend a particular concept or to do a particular task. For example, Class 2 children cannot completely grasp the idea that the digit 2 in 26 means 20, even though they can write and recognise 26 and can also identify it as a number smaller than 62. But the teachers often assume that the children have understood the concept of place value, and force them to start solving problems with "large" numbers by using standard algorithms. This is of no pedagogic value. In fact, teaching children strategies and methods of solving problems that they are not ready for stops them from thinking, simply because they get preoccupied with the mechanical task of arriving at an answer.

What we have discussed so far also adds weight to the following observation of child psychologists.


Related Discussions:- Example for articulate reasons and construct arguments

Find solution manual, i need solution manual of "calculus and analytic geom...

i need solution manual of "calculus and analytic geometry thomas 6th edition book "

Permuation and combination, how many words can be formed from letters of wo...

how many words can be formed from letters of word daughter such that each word contain 2vowles and 3consonant

Show that a, If the roots of the equation (b-c)x 2 +(c-a)x +(a-b) = 0 are ...

If the roots of the equation (b-c)x 2 +(c-a)x +(a-b) = 0 are equal show that a, b, c are in AP. Ans:    Refer sum No.12 of Q.E. If (b-c)x 2 + (c-a) x + (a-b) x have equ

Longer- term forecasting, Longer- Term Forecasting Moving averages, ex...

Longer- Term Forecasting Moving averages, exponential smoothing and decomposition methods tend to be utilized for short to medium term forecasting. Longer term forecasting is

Interpretations of the derivative , Interpretations of the Derivative : ...

Interpretations of the Derivative : Before moving on to the section where we study how to calculate derivatives by ignoring the limits we were evaluating in the earlier secti

How many ways can dvds be arranged on a shelf, How many ways can 4 DVDs be ...

How many ways can 4 DVDs be arranged on a shelf? Solution: There are 4 ways to choose the first DVD, 3 ways to choose the second, 2 ways to choose the third and 1 way to choo

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd