Even and odd functions, Mathematics

Assignment Help:

Even and Odd Functions : This is the final topic that we have to discuss in this chapter. 

Firstly, an even function is any function which satisfies,

                                                                f ( x ) = x2

Typical examples of even functions are following,

f ( x ) = f ( x )                                  f ( x ) = cos (x )

An odd function is any function that satisfies,

f (- x ) = - f ( x )

The typical examples of odd functions are following,

f ( x ) = x3                           f (x ) = sin ( x )

There are some nice facts regarding integrating even & odd functions over the interval [-a,a]. If f(x) is an even function then,

a (-a)      f ( x ) dx = 2∫a0 f ( x ) dx

Similarly, if f(x) is an odd function then,

 ∫a (-a)     f ( x ) dx =0

Note as well that in order to use these facts the limit of integration has to be the same number, however opposite signs!


Related Discussions:- Even and odd functions

Prove that cos - sin = v2 sin , If cos?+sin? = √2 cos?, prove that cos? - ...

If cos?+sin? = √2 cos?, prove that cos? - sin? =  √2 sin ?. Ans:    Cos? + Sin? =  √2 Cos? ⇒ ( Cos? + Sin?) 2  = 2Cos 2 ? ⇒ Cos 2 ? + Sin 2 ?+2Cos? Sin? = 2Cos 2 ? ⇒

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Differentiate product rule functions, Differentiate following functions. ...

Differentiate following functions. Solution At this point there in fact isn't a lot of cause to use the product rule.  We will utilize the product rule.  As we add

Stakeholders, what is the benefit for stakeholders or disadvantage in a mon...

what is the benefit for stakeholders or disadvantage in a monoply

Show that the angles subtended at the centre , A circle touches the sides o...

A circle touches the sides of a quadrilateral ABCD at P, Q, R and S respectively. Show that the angles subtended at the centre by a pair of opposite sides are supplementary.

Find out the volume of the solid method of disks , Find out the volume of t...

Find out the volume of the solid obtained by rotating the region bounded by y = x 2 - 4x + 5 , x = 1 , x = 4 , and the x-axis about the x-axis. Solution : The firstly thing t

Speed and distance, Two trains were traveling in opposite directions, movin...

Two trains were traveling in opposite directions, moving away from one another. One train was moving at 5 miles per hour. The other train was moving at 6 miles per hour. They were

Chp 8 Study, Center and Radius 1)(x+2)^2-(y-3)^2=4

Center and Radius 1)(x+2)^2-(y-3)^2=4

How did rousseau resolve the conflict, How did Rousseau resolve the conflic...

How did Rousseau resolve the conflict between the rights of the individual and the responsibilities of government (the state)? How did the ideas about universal education and socia

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd