Evalute right-hand limit, Mathematics

Assignment Help:

Evaluate following limits.

2454_limit90.png

Solution

Let's begin with the right-hand limit.  For this limit we have,

x > 4  ⇒          4 - x < 0          ⇒ ( 4 - x )3  = 0      also, 4 - x → 0  as x → 4 .  Therefore, we contain a positive constant divided by an increasingly small -ve number. The results will be an increasingly large -ve number and hence it looks like the right-hand limit will be negative infinity.

For the left-handed limit we have following,

x < 4 ⇒           4 - x > 0          ⇒ ( 4 - x )3  > 0 and still we have, 4 - x → 0  as x → 4 .  In this case we contain a positive constant divided by an increasingly small +ve number.  The results will be an increasingly large positive number and hence it looks like the left-hand limit will be positive infinity.

The normal limit will not present since the two one-sided limits are not the similar.  The official answers to this example are then,

2071_limit91.png

Following is a quick sketch to verify our limits.

714_limit92.png

Facts

Given the functions f ( x )& g ( x ) assume we have,

1466_limit93.png

for some real numbers c & L. Then,

1540_limit94.png


Related Discussions:- Evalute right-hand limit

Example of addition, Example 1 Add 4x 4 + 3x 3 - ...

Example 1 Add 4x 4 + 3x 3 - x 2 + x + 6 and -7x 4 - 3x 3 + 8x 2 + 8x - 4 We write them one below the other as shown below.

Simplification, how do we answer questions with fraction mixed. what are th...

how do we answer questions with fraction mixed. what are the easier ways to do it

Diffrential integral , All the integrals below are understood in the sense ...

All the integrals below are understood in the sense of the Lebesgue. (1) Prove the following equality which we used in class without proof. As-sume that f integrable over [3; 3]

Prove intercept of a tangent between two parallel, Prove that the intercept...

Prove that the intercept of a tangent between two parallel tangents to a circle subtends a right angle at the centre. Since Δ ADF ≅ Δ DFC ∠ADF = ∠CDF ∴ ∠ADC = 2 ∠CDF

Polynomials in two variables, Polynomials in two variables Let's take a...

Polynomials in two variables Let's take a look at polynomials in two variables.  Polynomials in two variables are algebraic expressions containing terms in the form ax n y m

Some definitions of exponential e, Some Definitions of e 1. ...

Some Definitions of e 1. 2.   e is the unique +ve number for which 3. The second one is the significant one for us since that limit is exactly the limit

Find quadratic equation using the quadratic formula, Find quadratic equatio...

Find quadratic equation using the Quadratic Formula: Solve the subsequent quadratic equation using the Quadratic Formula. 4x 2 + 2 = x 2 - 7x: Solution: Step 1.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd