Evalute right-hand limit, Mathematics

Assignment Help:

Evaluate following limits.

2454_limit90.png

Solution

Let's begin with the right-hand limit.  For this limit we have,

x > 4  ⇒          4 - x < 0          ⇒ ( 4 - x )3  = 0      also, 4 - x → 0  as x → 4 .  Therefore, we contain a positive constant divided by an increasingly small -ve number. The results will be an increasingly large -ve number and hence it looks like the right-hand limit will be negative infinity.

For the left-handed limit we have following,

x < 4 ⇒           4 - x > 0          ⇒ ( 4 - x )3  > 0 and still we have, 4 - x → 0  as x → 4 .  In this case we contain a positive constant divided by an increasingly small +ve number.  The results will be an increasingly large positive number and hence it looks like the left-hand limit will be positive infinity.

The normal limit will not present since the two one-sided limits are not the similar.  The official answers to this example are then,

2071_limit91.png

Following is a quick sketch to verify our limits.

714_limit92.png

Facts

Given the functions f ( x )& g ( x ) assume we have,

1466_limit93.png

for some real numbers c & L. Then,

1540_limit94.png


Related Discussions:- Evalute right-hand limit

Homework, How do you simplify 10:30:45

How do you simplify 10:30:45

Fraction, in a garden 1/8 of the flowers are tulips. 1/4 of the tulips are ...

in a garden 1/8 of the flowers are tulips. 1/4 of the tulips are rd. what fraction of the flowers in the garden are red tulips

Longer- term forecasting, Longer- Term Forecasting Moving averages, ex...

Longer- Term Forecasting Moving averages, exponential smoothing and decomposition methods tend to be utilized for short to medium term forecasting. Longer term forecasting is

Number theory, formula for non negative solutions integral

formula for non negative solutions integral

Bottleneck for each product, A company makes 2 products, Product A and Prod...

A company makes 2 products, Product A and Product B. The product characteristics are shown in the following table. Product A B

Find the area of the shaded region of square, In the adjoining figure, ABCD...

In the adjoining figure, ABCD is a square of side 6cm.  Find the area of the shaded region. Ans:    From P draw PQ ⊥ AB AQ = QB = 3cm (Ans: 34.428 sq cm) Join PB

Higher-order derivatives, Higher-Order Derivatives It can be se...

Higher-Order Derivatives It can be seen that the derivative of a function is also a function. Considering f'x as a function of x, we can take the derivative

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd