Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Next we have to talk about evaluating functions. Evaluating a function is in fact nothing more than asking what its value is for particular values of x. Another way of looking at it is that we are asking what the y value is for a given x is.
Evaluation is actually quite simple. Let's consider the function we were looking at above
f( x ) = x2 - 5x + 3
and ask what its value is for x= 4 . In terms of function notation we will "ask" this using the notation f( 4) . Thus, while there is something other than the variable within the parenthesis we are actually asking what the value of the function is for that specific quantity.
Now, while we say the value of the function we are actually asking what the value of the equation is for that specific value of x. Here is f( 4) .
f ( 4)= ( 4)2 - 5 ( 4) + 3 = 16 - 20 +3 = -1
Notice that evaluating a function is done in exactly the same way in which we evaluate equations. We plug in for x whatever is on the inside of the parenthesis on the left. Following is another evaluation for this function.
f( -6) = ( -6)2 - 5 ( -6) + 3 = 36 + 30 + 3 =69
Thus, again, whatever is on the inside of the parenthesis on the left is plugged in for x in the equation on the right.
3+5
How do they work?
4 1/2 ----2----1/3=3
As a creative and innovative entrepreneur, we are required to invent or improvise a product or service that benefits the society and the economy, so what do you think is it?
just give me some tips to submit a good asignments
if the sum of mean and variance of a binomial distribution is 4.8 for five trials, the distribution
Evaluate following sin 2 ?/3 and sin (-2 ?/3) Solution: The first evaluation in this part uses the angle 2 ?/3. It is not on our unit circle above, though notice that 2 ?/
howto know whether a region is bounded or not
8.5cm square = m square
We know that one has to deal with numbers in day-to-day life irrespective of his inclination and field of work. Also one cannot refute the fact
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd