Evaluating functions, Mathematics

Assignment Help:

Next we have to talk about evaluating functions.  Evaluating a function is in fact nothing more than asking what its value is for particular values of x. Another way of looking at it is that we are asking what the y value is for a given x is.

Evaluation is actually quite simple.  Let's consider the function we were looking at above

                                                 f( x ) = x2 - 5x + 3

and ask what its value is for x= 4 .  In terms of function notation we will "ask" this using the notation f( 4) .  Thus, while there is something other than the variable within the parenthesis we are actually asking what the value of the function is for that specific quantity.

Now, while we say the value of the function we are actually asking what the value of the equation is for that specific value of x.  Here is f( 4) .

                     f ( 4)= ( 4)2  - 5 ( 4) + 3 = 16 - 20 +3 = -1

Notice that evaluating a function is done in exactly the same way in which we evaluate equations. We plug in for x whatever is on the inside of the parenthesis on the left. Following is another evaluation for this function.

                              f( -6) = ( -6)2  - 5 ( -6) + 3 = 36 + 30 + 3 =69

Thus, again, whatever is on the inside of the parenthesis on the left is plugged in for x in the equation on the right.


Related Discussions:- Evaluating functions

Illustration of rank correlation coefficient, Illustration of Rank Correlat...

Illustration of Rank Correlation Coefficient In a beauty competition two assessors were asked to rank the 10 contestants by using the professional assessment skills. The resul

Finding the area of a triangle, Q. Finding the Area of a Triangle? Ther...

Q. Finding the Area of a Triangle? There are three commonly used methods to find the area of a triangle. The method you use to find the area depends on the information you kno

Integration, Integration of square root of sin

Integration of square root of sin

Pair of straight line, The equation ax2 + 2hxy + by2 =0 represents a pair o...

The equation ax2 + 2hxy + by2 =0 represents a pair of straight lines passing through the origin and its angle is tan q = ±2root under h2-ab/(a+b) and even the eqn ax2+2hxy+by2+2gx+

Basic, is 1/6 same as six times less

is 1/6 same as six times less

Addition involving negative numbers, Q. Addition Involving Negative Numbers...

Q. Addition Involving Negative Numbers? Ans. When you add together positive and negative numbers, there are essentially three possibilities that you can encounter. Let's e

Find third order partial derivatives, Question: Find all third order pa...

Question: Find all third order partial derivatives for the function   F(x,y)= log xy+ e (x+y) -x/y.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd