Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Next we have to talk about evaluating functions. Evaluating a function is in fact nothing more than asking what its value is for particular values of x. Another way of looking at it is that we are asking what the y value is for a given x is.
Evaluation is actually quite simple. Let's consider the function we were looking at above
f( x ) = x2 - 5x + 3
and ask what its value is for x= 4 . In terms of function notation we will "ask" this using the notation f( 4) . Thus, while there is something other than the variable within the parenthesis we are actually asking what the value of the function is for that specific quantity.
Now, while we say the value of the function we are actually asking what the value of the equation is for that specific value of x. Here is f( 4) .
f ( 4)= ( 4)2 - 5 ( 4) + 3 = 16 - 20 +3 = -1
Notice that evaluating a function is done in exactly the same way in which we evaluate equations. We plug in for x whatever is on the inside of the parenthesis on the left. Following is another evaluation for this function.
f( -6) = ( -6)2 - 5 ( -6) + 3 = 36 + 30 + 3 =69
Thus, again, whatever is on the inside of the parenthesis on the left is plugged in for x in the equation on the right.
greens function for x''''=0, x(1)=0, x''(0)+x''(1)=0 is G(t,s)= {1-s for t or equal to s
what are the concept of marketing?
Chain Rule : If f(x) and g(x) are both differentiable functions and we describe F(x) = (f. g)(x) so the derivative of F(x) is F′(x) = f ′(g(x)) g′(x). Proof We will s
We here move to one of the major applications of differential equations both into this class and in general. Modeling is the process of writing a differential equation to explain a
Homework help???
Ana has hiked 4 1/2 miles. She is 2/3 of the way along the trail. How long is the trail?
Melissa is four times as old as Jim. Pat is 5 years older than Melissa. If Jim is y years old, how old is Pat? Start along with Jim's age, y, because he appears to be the young
Tangent Lines : The first problem which we're going to study is the tangent line problem. Before getting into this problem probably it would be best to define a tangent line.
Here we look at only the rules without going into their proofs. They are: a 0. If a If a If a
Find out the number of ways in which 5 prizes can be distributed among 5 students such that (a) Each student may get a prize. (b) There is no restriction to the number o
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd