Evaluate the integral - trig substitutions, Mathematics

Assignment Help:

Example of Trig Substitutions

Evaluate the subsequent integral.

∫ √((25x2 - 4) / x) (dx)

Solution

In this type of case the substitution u = 25x2 - 4 will not work and so we are going to must do something dissimilar for this integral.

It would be great if we could get rid of the square root someway. The following substitution will do that for us.

X = 2/5 sec θ

Do not be anxious about where this came from at this point. As we work with this problem you will see that it works and that if we have a identical type of square root in the problem we can all time make use of a similar substitution. Previous to we actually do the substitution though let's confirm the claim that this will permit us to get rid of the square root.

965_Evaluate the integral - Trig Substitutions 1.png

To get relieve of the square root all we require to do is recall the relationship,

tan2 θ + 1 = sec2 θ  ⇒ sec2 θ -1 = tan2 θ

By using this detail the square root becomes,

√(25x2 - 4) = 2 √tan2 θ = 2|tan θ |

Note the existence of the absolute value bars there. These are significant.  Recall that

√x2 = |x|

There should all time be absolute value bars at this stage.  If we knew that tan θ was all time positive or all time negative we could remove the absolute value bars using,

|x| = x= if x > 0 or -x if x<0

With no limits we won't be capable to ascertain if tan θ is positive or negative, though, we will requires to eliminate them in order to do the integral. Hence, as we are doing an indefinite integral we will presume that tan θ will be positive and thus we can drop the absolute value bars. This illustrates,

√(25x2 - 4) = 2 tan θ

Thus, we were able to remove the square root by using this substitution.  Let's now do the substitution and see what we obtain.  In doing the substitution remember that we'll as well need to substitute for the dx. This is easy enough to get from the substitution.

935_Evaluate the integral - Trig Substitutions 2.png

x = 2/5 sec θ ⇒ dx = 2/5 sec θ tan θ d θ

By using this substitution the integral becomes,

1766_Evaluate the integral - Trig Substitutions 3.png

With this kind of substitution we were capable to eliminate the given integral to an integral involving trig functions and we saw how to do these problems in the preceding section.  Let's end the integral.

∫ √ (25x2 - 4)/x (dx) = 2∫ sec2 θ - 1d θ

=2(tan θ - θ) + c

Thus, we've got an answer for the integral.  Regrettably the answer isn't given in x's as it should be.  Thus, we require to write our answer in terms of x. We can do this along with some right triangle trig. From our original substitution we comprise,

sec θ = 5x/2 = hypotenuse / adjacent

This provides the following right triangle.

1212_Evaluate the integral - Trig Substitutions 4.png

From this we can see that,

tan θ = √((25x2 - 4) / 2)

We can deal along with the θ in one of any range of ways.  From our substitution we can see that,

θ = sec-1 (5x/2)

While this is a completely acceptable technique of dealing with the we can make use of any of the possible six inverse trig functions and as sine and cosine are the two trig functions most people are known with we will generally use the inverse sine or inverse cosine. In this case we will use the inverse cosine.

θ = cos-1 (2/5x)

Thus, with all of this the integral becomes

2208_Evaluate the integral - Trig Substitutions 5.png

We now have the solution back in terms of x.


Related Discussions:- Evaluate the integral - trig substitutions

Problem solving, Let E; F be 2 points in the plane, EF has length 1, and le...

Let E; F be 2 points in the plane, EF has length 1, and let N be a continuous curve from E to F. A chord of N is a straight line joining 2 points on N. Prove if 0 and N has no cho

Randy, write in factor form 9x3+9x5

write in factor form 9x3+9x5

Estimate percent of the original price will the customer pay, Bikes are on ...

Bikes are on sale for 30% off the original price. What percent of the original price will the customer pay if he gets the bike at the sale price? The original price of the bike

Randomly chosen boy can run this race in 302 sec, School run known to posse...

School run known to possess normal distribution with mean 440 sec & SD 60 sec. What is probability that randomly chosen boy can run this race in 302 sec.

How did they go about "modernizing" the region, What were the two main poli...

What were the two main political parties that formed in the majority of the new nations of Latin America post independence? In what ways were they different? Which party ascended t

Solid mensuration, what is the importance of solid mensuration?

what is the importance of solid mensuration?

Quadratic equation whose roots are real, Write the quadratic equation whose...

Write the quadratic equation whose roots are real and non conjugate Ans)  x^2-x+6=0 ...roots are real and non conjugate

Describe independent events in maths, Describe Independent Events in maths?...

Describe Independent Events in maths? Events are independent if the outcome of one event does not affect the outcome of the second event. If A represents one independent event

Calculus, Properties of Integration

Properties of Integration

Positive skewness-measure of central tendency, Positive Skewness - It ...

Positive Skewness - It is the tendency of a described frequency curve leaning towards the left. In a positively skewed distribution, the long tail extended to the right. In

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd