Evaluate the integral - trig substitutions, Mathematics

Assignment Help:

Example of Trig Substitutions

Evaluate the subsequent integral.

∫ √((25x2 - 4) / x) (dx)

Solution

In this type of case the substitution u = 25x2 - 4 will not work and so we are going to must do something dissimilar for this integral.

It would be great if we could get rid of the square root someway. The following substitution will do that for us.

X = 2/5 sec θ

Do not be anxious about where this came from at this point. As we work with this problem you will see that it works and that if we have a identical type of square root in the problem we can all time make use of a similar substitution. Previous to we actually do the substitution though let's confirm the claim that this will permit us to get rid of the square root.

965_Evaluate the integral - Trig Substitutions 1.png

To get relieve of the square root all we require to do is recall the relationship,

tan2 θ + 1 = sec2 θ  ⇒ sec2 θ -1 = tan2 θ

By using this detail the square root becomes,

√(25x2 - 4) = 2 √tan2 θ = 2|tan θ |

Note the existence of the absolute value bars there. These are significant.  Recall that

√x2 = |x|

There should all time be absolute value bars at this stage.  If we knew that tan θ was all time positive or all time negative we could remove the absolute value bars using,

|x| = x= if x > 0 or -x if x<0

With no limits we won't be capable to ascertain if tan θ is positive or negative, though, we will requires to eliminate them in order to do the integral. Hence, as we are doing an indefinite integral we will presume that tan θ will be positive and thus we can drop the absolute value bars. This illustrates,

√(25x2 - 4) = 2 tan θ

Thus, we were able to remove the square root by using this substitution.  Let's now do the substitution and see what we obtain.  In doing the substitution remember that we'll as well need to substitute for the dx. This is easy enough to get from the substitution.

935_Evaluate the integral - Trig Substitutions 2.png

x = 2/5 sec θ ⇒ dx = 2/5 sec θ tan θ d θ

By using this substitution the integral becomes,

1766_Evaluate the integral - Trig Substitutions 3.png

With this kind of substitution we were capable to eliminate the given integral to an integral involving trig functions and we saw how to do these problems in the preceding section.  Let's end the integral.

∫ √ (25x2 - 4)/x (dx) = 2∫ sec2 θ - 1d θ

=2(tan θ - θ) + c

Thus, we've got an answer for the integral.  Regrettably the answer isn't given in x's as it should be.  Thus, we require to write our answer in terms of x. We can do this along with some right triangle trig. From our original substitution we comprise,

sec θ = 5x/2 = hypotenuse / adjacent

This provides the following right triangle.

1212_Evaluate the integral - Trig Substitutions 4.png

From this we can see that,

tan θ = √((25x2 - 4) / 2)

We can deal along with the θ in one of any range of ways.  From our substitution we can see that,

θ = sec-1 (5x/2)

While this is a completely acceptable technique of dealing with the we can make use of any of the possible six inverse trig functions and as sine and cosine are the two trig functions most people are known with we will generally use the inverse sine or inverse cosine. In this case we will use the inverse cosine.

θ = cos-1 (2/5x)

Thus, with all of this the integral becomes

2208_Evaluate the integral - Trig Substitutions 5.png

We now have the solution back in terms of x.


Related Discussions:- Evaluate the integral - trig substitutions

Prove that three times the sum of the squares, Prove that three times the s...

Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle. Ans:    To prove 3(AB 2

Calculate the time average of kinetic energy of the planet, (1) If the coef...

(1) If the coefficient of friction between a box and the bed of a truck is m , What is the maximum acceleration with which the truck can climb a hill, making an angle q with the ho

Correlation and regression, 1. Using given data set (Assignment_1data in th...

1. Using given data set (Assignment_1data in the folder) a) Make scatterplot between "Years since first marriage" and "Total children ever born" b) Make scatterplot between

Properties of triangle, in a rhomus ABCD the circum radii of triangles ABD ...

in a rhomus ABCD the circum radii of triangles ABD and ACD are 12.5 cm and 25cm respetively then find the area of rhombus.

Find relation between x and y while lies on straight line, Find the relatio...

Find the relation between x and y when the point (x,y) lies on the straight line joining the points (2,-3) and (1,4) [ Hint: Use area of triangle is 0] Ans :   Hint: If the poi

The shape of a graph, The Shape of a Graph, Part I : In the earlier secti...

The Shape of a Graph, Part I : In the earlier section we saw how to employ the derivative to finds out the absolute minimum & maximum values of a function.  Though, there is many

Determine the average number and probability, 1) At a midway game at the st...

1) At a midway game at the state fair, the probability of winning an individual game is advertised to be 30% ( p = . 3). Suppose 50 people played the game (assume all 50 outcomes

Estimate how much did larry spend, Larry purchased 3 pairs of pants for $24...

Larry purchased 3 pairs of pants for $24 each or have 5 shirts for $18 each. How much did Larry spend? Divide the miles through the time to find the rate; 3,060 ÷ 5 = 612 mph.

Factors in denominator and partial fraction decomposition, Factors in Denom...

Factors in Denominator and Partial Fraction Decomposition Factor in denominator Term in partial  fraction decomposition   ax + b

Pair of straight lines, find the equation of locus of point which lies on b...

find the equation of locus of point which lies on bisectors of angles between the coordinate axes

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd