Evaluate the following exponentials limit, Mathematics

Assignment Help:

Evaluate following limits.

422_limit15.png

Solution: Let's begin this one off in the similar manner as the first part. Let's take the limit of each piece. This time note that since our limit is going to negative infinity the first three exponentials will actually go to zero (since their exponents go to minus infinity in the limit). The final two exponentials will go towards infinity in the limit (since their exponents go to plus infinity in the limit).

Taking limits gives,

504_limit16.png

Thus, the last two terms are the problem as they once again leave us with an indeterminate form.  We will factor out the "largest" exponent in the last two terms. However "largest" doesn't refer to the bigger of the two numbers (-2 is bigger than -15).  Rather than we're going to utilize "largest" to refer to the exponent i.e. farther away from zero.  By using this definition of "largest" means that we're going to factor out an e-15 x.

Again, remember that to factor out this all we actually are doing is dividing each of the term by e-15 x and then subtracting exponents. Following is the work for the first term as an example,

                                 e10 x /e-15 x = e10 x-( -15 x)= e25 x

As along the first part we can either factor out it of only the "problem" terms (that means the last two terms), or all the terms.  For the practice we'll factor it out of all the terms.  Following is the factoring work for this limit,

776_limit17.png

At last, after taking the limit of the two terms (the first is infinity & the second is a negative, finite number) and recalling the Facts through the Infinite Limit section we see that the limit is,

1622_limit18.png

At last, as you might have been capable to guess from the previous example while dealing with a sum and/or difference of exponentials all we have to do is look at the largest exponent to find out the behavior of the whole expression.  Again, recalling that if the limit is at plus infinity we just see at exponentials along with positive exponents & if we're looking at a limit at minus infinity we just see at exponentials with negative exponents.


Related Discussions:- Evaluate the following exponentials limit

Mean value theorem find out all the numbers c, Find out all the numbers c t...

Find out all the numbers c that satisfy the conclusions of the Mean Value Theorem for the given function.                                               f ( x ) = x 3 + 2 x 2 -

0^0, what is the value of zero to the power raised to zero?

what is the value of zero to the power raised to zero?

Define a complete lattice, Define a complete lattice and give one example. ...

Define a complete lattice and give one example. Ans:  A lattice (L, ≤) is said to be a complete lattice if, and only if every non-empty subset S of L has a greatest lower bound

Exponential functions, The exponential functions are useful for descr...

The exponential functions are useful for describing compound interest and growth. The exponential function is defined as:          y = m. a x where '

Expected value of perfect information, Expected Value of Perfect Informatio...

Expected Value of Perfect Information In the above problems we have used the expected value criterion to evaluate the decisions under the conditions of risk. But, as long as un

Shares and dividends, at what price a 6.25%rs 100 share be quoted when the ...

at what price a 6.25%rs 100 share be quoted when the money is worth 5%

Triangle treat, what letters to fill in the boxes

what letters to fill in the boxes

Local maxima, Given that f(x,y) = 3xy -  x 2 y  - xy 2 . Fi nd all the poin...

Given that f(x,y) = 3xy -  x 2 y  - xy 2 . Fi nd all the points on the surface z = f(x, y)where local maxima, local minima, or saddles occur

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd