Evaluate the following exponentials limit, Mathematics

Assignment Help:

Evaluate following limits.

422_limit15.png

Solution: Let's begin this one off in the similar manner as the first part. Let's take the limit of each piece. This time note that since our limit is going to negative infinity the first three exponentials will actually go to zero (since their exponents go to minus infinity in the limit). The final two exponentials will go towards infinity in the limit (since their exponents go to plus infinity in the limit).

Taking limits gives,

504_limit16.png

Thus, the last two terms are the problem as they once again leave us with an indeterminate form.  We will factor out the "largest" exponent in the last two terms. However "largest" doesn't refer to the bigger of the two numbers (-2 is bigger than -15).  Rather than we're going to utilize "largest" to refer to the exponent i.e. farther away from zero.  By using this definition of "largest" means that we're going to factor out an e-15 x.

Again, remember that to factor out this all we actually are doing is dividing each of the term by e-15 x and then subtracting exponents. Following is the work for the first term as an example,

                                 e10 x /e-15 x = e10 x-( -15 x)= e25 x

As along the first part we can either factor out it of only the "problem" terms (that means the last two terms), or all the terms.  For the practice we'll factor it out of all the terms.  Following is the factoring work for this limit,

776_limit17.png

At last, after taking the limit of the two terms (the first is infinity & the second is a negative, finite number) and recalling the Facts through the Infinite Limit section we see that the limit is,

1622_limit18.png

At last, as you might have been capable to guess from the previous example while dealing with a sum and/or difference of exponentials all we have to do is look at the largest exponent to find out the behavior of the whole expression.  Again, recalling that if the limit is at plus infinity we just see at exponentials along with positive exponents & if we're looking at a limit at minus infinity we just see at exponentials with negative exponents.


Related Discussions:- Evaluate the following exponentials limit

Integers, hi i would like to ask you what is the answer for [-9]=[=5] grade...

hi i would like to ask you what is the answer for [-9]=[=5] grade 7

Fermat''s theorem, Fermat's Theorem : If  f ( x ) contain a relative extre...

Fermat's Theorem : If  f ( x ) contain a relative extrema at x = c & f ′ (c ) exists then x = c is a critical point of f ( x ) . Actually, it will be a critical point such that f

Math problem, integral from 0 to pi of dx/(a+b*cos(x)

integral from 0 to pi of dx/(a+b*cos(x)

Determine matrix of transformation for orthogonal projection, Determine the...

Determine the matrix of transformation for the orthogonal projection onto the line L that passes through the origin and is in the direction Û=(3/13 , 4/13 , 12/13). Determine the r

Diferential equations, Find the normalized differential equation which has ...

Find the normalized differential equation which has {x, xex} as its fundamental set

Prove the parallelogram circumscribing a circle is rhombus, Prove that the ...

Prove that the parallelogram circumscribing a circle is rhombus. Ans   Given : ABCD is a parallelogram circumscribing a circle. To prove : - ABCD is a rhombus or AB

What was the total cost of the copies, Mary made 34 copies at the local off...

Mary made 34 copies at the local office supply store. The copies cost $0.06 each. What was the total cost of the copies? Multiply 34 by $0.06 to ?nd out the total cost; 34 × $0

Introduction , what states and marketing tasks?

what states and marketing tasks?

Ordinary differential equations, Verify Liouville''s formula for y^ prime p...

Verify Liouville''s formula for y^ prime prime prime -y^ prime prime - y'' + y = 0 in [0, 1]

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd