Evaluate the deflection at the free end of the cantilever:
Discover the slope and deflection at the free end of the cantilever illustrated in Figure . Take EI = 200 × 106 N-m2.
Solution
Apply Udl in both the upward and downward directions in the portion CB.
Figure
Figure
M = - 24 x . (x/2) + 24 ( x - 1) (( x - 1)/2) - 30 [ x - 2]
= - 12 x2 + 12 [ x - 1]2 - 30 [ x - 2] --------- (1)
EI (d 2 y /dx2 )= M = - 12 x 2 + 12 [ x - 1]2 - 30 [ x - 2] ----------- (2)
EI dy/ dx = - 4 x3 + 4 [ x - 1]3 - 15 [ x - 2] 2+ C1 --------- (3)
EIy =- x + [ x - 1] - 5 [ x - 2] + C1 x + C2 --------------- (4)
The boundary conditions are :
At B, x = 4 m, dy/ dx = 0 -------- (5)
At B, x = 4 m, y = 0 ----------- (6)
From Eqs. (3) and (5)
0 = - 4 × 4 3+ 4 (4 - 1) 3- 15 (4 - 2)3 + C1
∴ C1 = 208 ----------- (7)
From Eqs. (4), (6) and (7)
0 =- 4 4+ (4 - 1)4 - 5 (4 - 2) 3+ 208 × 4 + C2
∴ C2 = - 617 --------- (8)
∴ EI (dy / dx )=- 4 x3 + 4 [ x - 1]3 - 15 [ x - 2]2 + 208 ---------- (9)
EIy =- x4 + [ x - 1]4 - 5 [ x - 2]3 + 208 x - 617-------- (10)
At free end A, x = 0, From Eq. (9)
θ A = + 208 /EI = + 208 × 10/200 × 106 = + 1.04 × 10- 3 radians
From Eq. (10)
yA = 617/EI = - 617 × 103 × 103 / 200 × 106 = - 3.085 mm ( ↓ )