Evaluate the definite integral, Mathematics

Assignment Help:

Evaluate the given definite integral.

1733_formula3.png

Solution                     

Let's begin looking at the first way of dealing along with the evaluation step. We'll have to be careful with this method as there is a point in the procedure where if we aren't paying attention we'll obtain the wrong answer.

Solution 1 :

First we'll need to compute the indefinite integral using the substitution rule.  Note as well however, that we will continually remind ourselves that it is a definite integral by putting the limits on the integral at each of the step.  Without the limits it's simple to forget that we contained a definite integral while we've gotten the indefinite integral computed.

In this case the substitution is,

u = 1 - 4t 3                 du = -12t 2 dt                   ⇒    t 2 dt = - 1/12 du

Plugging this in the integral gives,

599_formula4.png

Notice as well that we didn't do the evaluation yet. It is where the potential problem arises along with this solution method. The limits specified here are from the original integral and therefore are values of t. We have u's in solution.  We can't plug values of t in for u.

Therefore, we will have to go back to t's before we carry out the substitution. It is the standard step in the substitution procedure, but it is frequently forgotten while doing definite integrals. Note that in this case, if we don't go back to t's we will have small problem in that one of the evaluations will end up giving us a complex number.

Therefore, finishing this problem gives,

776_formula5.png

                                  =-(1/9)-(-(1/9)(33)(3/2))

                                 = (1/9)-( 33√33)-1)

Therefore, that was the first solution method.  Let's see second method.

Solution 2 :

Note as well that this solution method isn't actually all that different from the first method.  In this method while doing substitutions we desire to eliminate all the t's in the integral & write everything in terms of u.

While we say all here we actually mean all.  In other terms, remember that limits on the integral are also values of t & we will convert the limits into u values.  Converting the limits is fairly simple since our substitution will tell us how to associate t and u so all we have to do is plug in the original t limits into the substitution & we'll get the new u limits.

Following is the substitution (it's the same as the first method) as well as the limit conversions.

u = 1 - 4t 3        du = -12t 2 dt       ⇒ t + dt = - 1/12 du

t = -2             ⇒      u = 1 - 4 ( -2)3  = 33

t = 0              ⇒       u = 1 - 4 (0)3  = 1

Now the integral is,

2376_formula8.png

As along with the first method let's pause here a moment to remind us what we're doing.  In this particular case, we've converted the limits to u's & we've also got our integral in terms of u's and therefore here we can just plug the limits directly into our integral.  Note as well that in this case we won't plug our substitution back in.  Doing it would cause problems as we would have t's in the integral and our limits would be u's.  Following is the rest of this problem.

We exactly got the similar answer & this time didn't have to worry about going back to t's in our answer.

Therefore, we've seen two solution techniques for calculating definite integrals which require the substitution rule.  Both are valid methods and each has their uses. We will be using the second completely however as it makes the evaluation step a little easier.


Related Discussions:- Evaluate the definite integral

#probability, A B C play a game. If chance of their winning it in an attemp...

A B C play a game. If chance of their winning it in an attempt arr2/3, 1/2, 1/4 respective. A has a first chance followed by Band Called respective chances of winning the game.

NOWA method, solve the equation 540+115 using the NOWA method

solve the equation 540+115 using the NOWA method

Pre calc, - Find the total surface area of a frustum of a cone. (Include to...

- Find the total surface area of a frustum of a cone. (Include top and bottom). The equation that I have for volume is v=1/3 pi x h(r^2+rR+R^2) -the equation that I have found fo

Find the probability, Q. Suppose Jessica has 10 pairs of shorts and 5 pair...

Q. Suppose Jessica has 10 pairs of shorts and 5 pairs of jeans in her drawer. How many ways could she pick out something to wear for the day? What is the probability that she pick

Determine the measurements of segments and angles, Determine the Measuremen...

Determine the Measurements of Segments and Angles Postulate 1.5 (The Distance Postulate) There is a unique positive number corresponding to every pair of points. Pos

Ratio, There are only Chinese and Malay pupils in a hall.The ratio of the n...

There are only Chinese and Malay pupils in a hall.The ratio of the number of boys to the number of girls is 2:3.The ratio of the number of Chinese boys to the number of Malay boys

Inverse cosine, Inverse Cosine : Now see at inverse cosine.  Following is ...

Inverse Cosine : Now see at inverse cosine.  Following is the definition for the inverse cosine.                         y = cos -1 x       ⇔ cos y = x                   for

two women may stand behind each othe, How many ways can six men and three ...

How many ways can six men and three women form a line if no two women may stand behind each other?

Shiites muhammad''s flight from mecca to medina, The first year of the Isla...

The first year of the Islamic calendar marks the following event: The birth of Muhammad The Qu'ran is assembled into a single sacred text The division of the Sunnis and the Shiites

Transpotation, how can you determine trasportation schedule that minimizes ...

how can you determine trasportation schedule that minimizes cost

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd