Evaluate the definite integral, Mathematics

Assignment Help:

Evaluate the given definite integral.

1733_formula3.png

Solution                     

Let's begin looking at the first way of dealing along with the evaluation step. We'll have to be careful with this method as there is a point in the procedure where if we aren't paying attention we'll obtain the wrong answer.

Solution 1 :

First we'll need to compute the indefinite integral using the substitution rule.  Note as well however, that we will continually remind ourselves that it is a definite integral by putting the limits on the integral at each of the step.  Without the limits it's simple to forget that we contained a definite integral while we've gotten the indefinite integral computed.

In this case the substitution is,

u = 1 - 4t 3                 du = -12t 2 dt                   ⇒    t 2 dt = - 1/12 du

Plugging this in the integral gives,

599_formula4.png

Notice as well that we didn't do the evaluation yet. It is where the potential problem arises along with this solution method. The limits specified here are from the original integral and therefore are values of t. We have u's in solution.  We can't plug values of t in for u.

Therefore, we will have to go back to t's before we carry out the substitution. It is the standard step in the substitution procedure, but it is frequently forgotten while doing definite integrals. Note that in this case, if we don't go back to t's we will have small problem in that one of the evaluations will end up giving us a complex number.

Therefore, finishing this problem gives,

776_formula5.png

                                  =-(1/9)-(-(1/9)(33)(3/2))

                                 = (1/9)-( 33√33)-1)

Therefore, that was the first solution method.  Let's see second method.

Solution 2 :

Note as well that this solution method isn't actually all that different from the first method.  In this method while doing substitutions we desire to eliminate all the t's in the integral & write everything in terms of u.

While we say all here we actually mean all.  In other terms, remember that limits on the integral are also values of t & we will convert the limits into u values.  Converting the limits is fairly simple since our substitution will tell us how to associate t and u so all we have to do is plug in the original t limits into the substitution & we'll get the new u limits.

Following is the substitution (it's the same as the first method) as well as the limit conversions.

u = 1 - 4t 3        du = -12t 2 dt       ⇒ t + dt = - 1/12 du

t = -2             ⇒      u = 1 - 4 ( -2)3  = 33

t = 0              ⇒       u = 1 - 4 (0)3  = 1

Now the integral is,

2376_formula8.png

As along with the first method let's pause here a moment to remind us what we're doing.  In this particular case, we've converted the limits to u's & we've also got our integral in terms of u's and therefore here we can just plug the limits directly into our integral.  Note as well that in this case we won't plug our substitution back in.  Doing it would cause problems as we would have t's in the integral and our limits would be u's.  Following is the rest of this problem.

We exactly got the similar answer & this time didn't have to worry about going back to t's in our answer.

Therefore, we've seen two solution techniques for calculating definite integrals which require the substitution rule.  Both are valid methods and each has their uses. We will be using the second completely however as it makes the evaluation step a little easier.


Related Discussions:- Evaluate the definite integral

Numerical integration - simpson rule, (1)Derive, algebraically, the 2nd ord...

(1)Derive, algebraically, the 2nd order (Simpson's Rule) integration formula using 3 equally spaced sample points, f 0 ,f 1 ,f 2 with an increment of h. (2) Using software such

Algebria, solve and graph the solution set 7x-4 > 5x + 0

solve and graph the solution set 7x-4 > 5x + 0

Math probles, Belleville lake was originally blue because it only had 11 al...

Belleville lake was originally blue because it only had 11 algae plants. then towns and farms cropped up by the lake .this cause 446 more algae plants to grow which turned the lake

Finding absolute extrema, Finding Absolute Extrema : Now it's time to see ...

Finding Absolute Extrema : Now it's time to see our first major application of derivatives.  Specified a continuous function, f(x), on an interval [a,b] we desire to find out the

Calculate the area of remaining piece of cardboard, A piece of cardboard in...

A piece of cardboard in the shape of a trapezium ABCD & AB || DE, ∠ BCD = 900, quarter circle BFEC is removed. Given AB = BC = 3.5 cm, DE = 2 cm. Calculate the area of remaining p

Determine the area of the rectangle, Stuckeyburg is a very small town in ru...

Stuckeyburg is a very small town in rural America. Use the map to approximate the area of the town. a. 40 miles 2 b. 104 miles 2 c. 93.5 miles 2 d. 92 miles 2

Factors in denominator and partial fraction decomposition, Factors in Denom...

Factors in Denominator and Partial Fraction Decomposition Factor in denominator Term in partial  fraction decomposition   ax + b

Learning, my math skills are keeping me from getting my ged need help in al...

my math skills are keeping me from getting my ged need help in all areas

Index shift - sequences and series, Index Shift - Sequences and Series ...

Index Shift - Sequences and Series The main idea behind index shifts is to start a series at a dissimilar value for whatever the reason (and yes, there are legitimate reasons

Angles, how do you workout the value of the missing angle

how do you workout the value of the missing angle

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd