Evaluate the definite integral, Mathematics

Assignment Help:

Evaluate the given definite integral.

1733_formula3.png

Solution                     

Let's begin looking at the first way of dealing along with the evaluation step. We'll have to be careful with this method as there is a point in the procedure where if we aren't paying attention we'll obtain the wrong answer.

Solution 1 :

First we'll need to compute the indefinite integral using the substitution rule.  Note as well however, that we will continually remind ourselves that it is a definite integral by putting the limits on the integral at each of the step.  Without the limits it's simple to forget that we contained a definite integral while we've gotten the indefinite integral computed.

In this case the substitution is,

u = 1 - 4t 3                 du = -12t 2 dt                   ⇒    t 2 dt = - 1/12 du

Plugging this in the integral gives,

599_formula4.png

Notice as well that we didn't do the evaluation yet. It is where the potential problem arises along with this solution method. The limits specified here are from the original integral and therefore are values of t. We have u's in solution.  We can't plug values of t in for u.

Therefore, we will have to go back to t's before we carry out the substitution. It is the standard step in the substitution procedure, but it is frequently forgotten while doing definite integrals. Note that in this case, if we don't go back to t's we will have small problem in that one of the evaluations will end up giving us a complex number.

Therefore, finishing this problem gives,

776_formula5.png

                                  =-(1/9)-(-(1/9)(33)(3/2))

                                 = (1/9)-( 33√33)-1)

Therefore, that was the first solution method.  Let's see second method.

Solution 2 :

Note as well that this solution method isn't actually all that different from the first method.  In this method while doing substitutions we desire to eliminate all the t's in the integral & write everything in terms of u.

While we say all here we actually mean all.  In other terms, remember that limits on the integral are also values of t & we will convert the limits into u values.  Converting the limits is fairly simple since our substitution will tell us how to associate t and u so all we have to do is plug in the original t limits into the substitution & we'll get the new u limits.

Following is the substitution (it's the same as the first method) as well as the limit conversions.

u = 1 - 4t 3        du = -12t 2 dt       ⇒ t + dt = - 1/12 du

t = -2             ⇒      u = 1 - 4 ( -2)3  = 33

t = 0              ⇒       u = 1 - 4 (0)3  = 1

Now the integral is,

2376_formula8.png

As along with the first method let's pause here a moment to remind us what we're doing.  In this particular case, we've converted the limits to u's & we've also got our integral in terms of u's and therefore here we can just plug the limits directly into our integral.  Note as well that in this case we won't plug our substitution back in.  Doing it would cause problems as we would have t's in the integral and our limits would be u's.  Following is the rest of this problem.

We exactly got the similar answer & this time didn't have to worry about going back to t's in our answer.

Therefore, we've seen two solution techniques for calculating definite integrals which require the substitution rule.  Both are valid methods and each has their uses. We will be using the second completely however as it makes the evaluation step a little easier.


Related Discussions:- Evaluate the definite integral

Which general famously stated ''i shall return'', Which general famously st...

Which general famously stated 'I shall return'? A. Bull Halsey B. George Patton C. Douglas MacArthur D. Omar Bradley

Calculus, application of radious of curvatur

application of radious of curvatur

Determine the solution to initial value problem, Find the solution to the s...

Find the solution to the subsequent IVP. ty' - 2y = t 5 sin(2t) - t 3 + 4t 4 , y (π) = 3/2 π 4 Solution : First, divide by t to find the differential equation in the accu

World problem, Buses to Acton leave a bus station every 24 minutes. Buses t...

Buses to Acton leave a bus station every 24 minutes. Buses to Barton leave the same bus station every 20 minutes. A bus to Acton and a bus to Barton both leave the bus station at 9

Trigonometry, trigonometric ratios of sum and difference of two angles

trigonometric ratios of sum and difference of two angles

MATH HELP: URGENT, the andersons are buying a new home and need to fence th...

the andersons are buying a new home and need to fence their yard. the yard is 40 ft by 80 ft. each fencing section is 8ft. how many sections will they need?how many posts will they

Application of linear function, four times an unknown number is equal to tw...

four times an unknown number is equal to twice the sum of five and that unknown number

Example of probability, Example of Probability: Example: By using...

Example of Probability: Example: By using a die, what is the probability of rolling two 3s in a row? Solution: From the previous example, there is a 1/6 chance of

What is uniform distribution, Q. What is Uniform Distribution? Ans. ...

Q. What is Uniform Distribution? Ans. A distribution is the set of possible values of a random variable considered in terms of their theoretical or observed frequency. Th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd