Evaluate the convergence of the algorithms, Mathematics

Assignment Help:

Evaluate the convergence of the algorithms:

From the convergence proof of power method, LR and QR algorithm for the computation of eigenvalues we see that the easiest case to proof convergence of these algorithms is when all eigenvalues of a matrix are distinct and their absolute values are also distinct.

Conversely, it is not difficult to imagine that the convergence can be difficult to obtain when several eigenvalues have similar absolute values or in the case of repeated eigenvalue. In this project, we attempt to examine some of these more challenging cases.

Algorithmic Analysis

(a) Show that for any real valued matrix A, if a complex number is an eigenvalue, the complex conjugate μ must also be an eigenvalue.

(b) Consider a matrix A with a complex eigenvalue with non-zero imaginary part. Consider the Jornal canonical form of matrix A obtained via similarity transformation. What are the relationships between elementary Jordan blocks associated with and ?

(c) When using the power method or the LR or QR algorithm, can the algorithm converge to an upper-triangular matrix?

(d) Propose a possible approach to compute complex eigenvalues of a real valued matrix A.

Computer Implementation

(a) Implement LR and QR for computation of eigenvalues including algorithm to first transform the input matrix to a Henssenberg matrix.

(b) Validate the correctness of your implementation.

(c) Evaluate the convergence of the algorithms in the case of matrix with complex eigenvalue.


Related Discussions:- Evaluate the convergence of the algorithms

What is the smallest possible number 3, What is the smallest possible numbe...

What is the smallest possible number in which can be created along with four decimal places using the numbers 3, 5, 6, and 8? Place the smallest number in the largest place val

Concrete operational stage, Concrete Operational Stage :  Piaget describes...

Concrete Operational Stage :  Piaget describes a five-year-old boy playing with a collection of pebbles. First, he laid them in a line and counted along the line from left to righ

Calculus!, x+2y^2=63 and 4x+y^2=0; Find the area of the regions enclosed by...

x+2y^2=63 and 4x+y^2=0; Find the area of the regions enclosed by the lines and curves.

Rounding, how do you round to the nearest dollars?

how do you round to the nearest dollars?

Graphing sets of numbers, Q. Graphing Sets of Numbers? Ans. To  gr...

Q. Graphing Sets of Numbers? Ans. To  graph  a set of numbers on a number line means to plot, or locate, those positions on the line. The number that corresponds to a poin

Example to understand division means, My nephew had been introduced to divi...

My nephew had been introduced to division by his teacher Ms. Santosh, in Class 3. He, and several of his friends who had been taught by her, appeared to be quite comfortable with t

Repeated eigenvalues, It is the last case that we require to take a look at...

It is the last case that we require to take a look at. During this section we are going to look at solutions to the system, x?' = A x? Here the eigenvalues are repeated eigen

Function notation, Now we need to move onto something called function notat...

Now we need to move onto something called function notation.  Function notation will be utilized heavily throughout most of remaining section and so it is important to understand i

Co-prime positive integers, A group of 5 people are going to meet weekly at...

A group of 5 people are going to meet weekly at the library for 4 weeks. Every week, two people are selected at random to speak. Every person may speak in multiple weeks, but no pa

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd