Evaluate the convergence of the algorithms, Mathematics

Assignment Help:

Evaluate the convergence of the algorithms:

From the convergence proof of power method, LR and QR algorithm for the computation of eigenvalues we see that the easiest case to proof convergence of these algorithms is when all eigenvalues of a matrix are distinct and their absolute values are also distinct.

Conversely, it is not difficult to imagine that the convergence can be difficult to obtain when several eigenvalues have similar absolute values or in the case of repeated eigenvalue. In this project, we attempt to examine some of these more challenging cases.

Algorithmic Analysis

(a) Show that for any real valued matrix A, if a complex number is an eigenvalue, the complex conjugate μ must also be an eigenvalue.

(b) Consider a matrix A with a complex eigenvalue with non-zero imaginary part. Consider the Jornal canonical form of matrix A obtained via similarity transformation. What are the relationships between elementary Jordan blocks associated with and ?

(c) When using the power method or the LR or QR algorithm, can the algorithm converge to an upper-triangular matrix?

(d) Propose a possible approach to compute complex eigenvalues of a real valued matrix A.

Computer Implementation

(a) Implement LR and QR for computation of eigenvalues including algorithm to first transform the input matrix to a Henssenberg matrix.

(b) Validate the correctness of your implementation.

(c) Evaluate the convergence of the algorithms in the case of matrix with complex eigenvalue.


Related Discussions:- Evaluate the convergence of the algorithms

Scatter graphs, Scatter Graphs - A scatter graph is a graph that compr...

Scatter Graphs - A scatter graph is a graph that comprises of points which have been plotted but are not joined through line segments - The pattern of the points will defin

How does a child think-knowing your maths learner, HOW DOES A CHILD THINK? ...

HOW DOES A CHILD THINK? :  You must have interacted with children of various ages. From your experience, do you feel that children start learning, from a very early age, and conti

Determine the tangent line to f ( x ) = 15 - 2x2 at x = 1, Determine the t...

Determine the tangent line to f ( x ) = 15 - 2x 2   at x = 1. Solution : We know from algebra that to determine the equation of a line we require either two points onto the li

Denote the statement in predicate calculus, Denote the subsequent statement...

Denote the subsequent statement in predicate calculus: "Everybody respects all the selfless leaders". Ans: For each X, if every Y that is a person respects X, then X is a selfl

Mathematics for finance, 1. XYZ company’s cost function for the next four m...

1. XYZ company’s cost function for the next four months is C = 600,000 + 8Q a) Find the BEP dollar volume of sales if the selling price is br. 10 / unit b) What woul

Show that 8 - 10 + 21= 0, If A, B and P are the points (-4, 3), (0, -2) and...

If A, B and P are the points (-4, 3), (0, -2) and (α,β) respectively and P is equidistant from A and B, show that 8α - 10β + 21= 0. Ans :   AP = PB ⇒ AP 2 = PB 2 (∝ + 4) 2

Wronskian, In the earlier section we introduced the Wronskian to assist us ...

In the earlier section we introduced the Wronskian to assist us find out whether two solutions were a fundamental set of solutions. Under this section we will look at the other app

Example of addition of signed numbers, Example of addition of Signed Number...

Example of addition of Signed Numbers: Example: (-2) + 3 + 4 = 0 - 2 + 3 + 4 Solution: Thus: (-2) + 3 + 4 = 5  Example: 10 + (-5) + 8 + (-7)

Halm''s differential equation, please i need the solution for halm''s diffe...

please i need the solution for halm''s differential equation

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd