Evaluate the convergence of the algorithms, Mathematics

Assignment Help:

Evaluate the convergence of the algorithms:

From the convergence proof of power method, LR and QR algorithm for the computation of eigenvalues we see that the easiest case to proof convergence of these algorithms is when all eigenvalues of a matrix are distinct and their absolute values are also distinct.

Conversely, it is not difficult to imagine that the convergence can be difficult to obtain when several eigenvalues have similar absolute values or in the case of repeated eigenvalue. In this project, we attempt to examine some of these more challenging cases.

Algorithmic Analysis

(a) Show that for any real valued matrix A, if a complex number is an eigenvalue, the complex conjugate μ must also be an eigenvalue.

(b) Consider a matrix A with a complex eigenvalue with non-zero imaginary part. Consider the Jornal canonical form of matrix A obtained via similarity transformation. What are the relationships between elementary Jordan blocks associated with and ?

(c) When using the power method or the LR or QR algorithm, can the algorithm converge to an upper-triangular matrix?

(d) Propose a possible approach to compute complex eigenvalues of a real valued matrix A.

Computer Implementation

(a) Implement LR and QR for computation of eigenvalues including algorithm to first transform the input matrix to a Henssenberg matrix.

(b) Validate the correctness of your implementation.

(c) Evaluate the convergence of the algorithms in the case of matrix with complex eigenvalue.


Related Discussions:- Evaluate the convergence of the algorithms

Area of a circle, How do you find the area of a circle given the diameter?

How do you find the area of a circle given the diameter?

Applications of de moiver, what are the applications of de moiver''s theore...

what are the applications of de moiver''s theorem in programming and software engineering

Rocks and minerals, question..how do u understand thr rock cycle

question..how do u understand thr rock cycle

Derive expressions for the mean and variance, On each day t of n days, N cu...

On each day t of n days, N customers of a supermarket were sampled and the number Xt expressing dissatisfaction was recorded. The results suggested that there were good and bad day

Lori, rewrite the problem so that the divisor is a whole number...8.5/2.3

rewrite the problem so that the divisor is a whole number...8.5/2.3

Prove that xa+ar=xb+br of circle, In figure, XP and XQ are tangents from X ...

In figure, XP and XQ are tangents from X to the circle with centre O. R is a point on the circle. Prove that XA+AR=XB+BR Ans:    Since the length of tangents from externa

integral 0 to pi e^cosx cos (sinx) dx, Let u = sin(x). Then du = cos(x) dx...

Let u = sin(x). Then du = cos(x) dx. So you can now antidifferentiate e^u du. This is e^u + C = e^sin(x) + C.  Then substitute your range 0 to pi. e^sin (pi)-e^sin(0) =0-0 =0

Diagonals of a trapezium divide each other proportionally , Diagonals of a ...

Diagonals of a trapezium divide each other proportionally: Given : In trapezium ABCD , AB// DC R.T.P :AO/OC = BO/OD Construction: Draw the line PQ; parallel to AB or C

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd