Evaluate the acceleration of the three weights, Mechanical Engineering

Assignment Help:

Evaluate the acceleration of the three weights:

A system of weight connected by the string passing over pulleys A and B is shown in figure given below. Find out acceleration of the three weights. Assume the weightless string and ideal condition for the pulleys.

Sol: As strings are weightless and ideal conditions prevail, thus the tensions in string passing over pulley A will be same. The tensions in string passing over pulley B will be same. But tensions in the strings passing over pulley A and over pulley B will be different as shown in the given figure.

Let T1  = Tension in string passing over pulley A
T2  = Tension in string passing over pulley B

One end of string passing over pulley A is connected to the weight 15N, and other end is connected to pulley B. As weight 15N is more than weights (6 + 4 = 10N), thus weight 15N will move downwards, while pulley B will move upwards. The acceleration of weight 15N and of pulley B will be same.

Let, a  = Acceleration of block 15N in the downward direction1  = Acceleration of 6N downward with respect to the pulley B.

Then acceleration of weight 4N with respect to the pulley B = a1  in upward direction.

1385_Evaluate the acceleration of the three weights.png

The absolute acceleration of weight 4N,

= Acceleration of 4N with respect pulley B + Acceleration of pulley B. = a1 + a (upward)

(as both the acceleration are in upward direction, total acceleration will be the sum of the two accelerations)

Absolute acceleration of weight 6N,

= Acceleration of 6 with respect to pulley B + Acceleration of pulley B.

= a1 - a (downward)

(As a1 is acting downward while a is acting upward. Thus total acceleration in downward direction)

Consider motion of weight 15N Net downward force = 15 - T1

Using F = ma,

15 - T1 = (15/9.81)a                                                                                                                         ...(1)

Consider motion of weight 4N

Net downward force = T2  - 4

Using F = ma,

T2  - 4 = (4/9.81)(a + a1)                                                                                                               ...(2)

Consider the motion of weight 6N

Net downward force = 6 - T2

Using F = ma,

6 - T2 = (6/9.81)(a1 - a)                                                                                                                ...(3)

Consider motion of pulley B,

T1=2T2                                                                                                                                         ...(4)

Adding equation (2) and (3)

2 = (4/9.81)(a + a1) + (6/9.81)(a1 - a)

9.81 = 5a1 - a                                                                                                                               ...(5)

Multiply equation (2) by 2 and put value of equation (4),

T1  - 8 = (8/9.81)(a1  + a)                                                                                                                ...(6)

Add equation (1) and (6), we get

15 - 8 = (15/9.81)a + (8/9.81)(a1  + a)

23a + 8a1 = 7 X 9.81                                                                                                                           ...(7)

Multiply equation (5) by 23 and add with equation (7),

a1 = 2.39m/sec2                                                                                                                         .....ANS

Putting value of a1 in equation (5),

a = 2.15m/sec2                                                                                                                            ....ANS

Acceleration of weight 15N = a = 2.15m/sec2                                                                   ......ANS

Acceleration of weight 6N = a = 0.24m/sec2                                                                     .......ANS

Accelerationofweight  4N = a = 4.54m/sec2                                                                      .......ANS



Related Discussions:- Evaluate the acceleration of the three weights

Estimate the cutting time, Estimate the Cutting Time A surface 115 mm ...

Estimate the Cutting Time A surface 115 mm wide and 250 mm long is to be rough milled with a depth of cut of 6 mm by a 16-tooth cemented carbide face mill 150 mm in diameter.

What are the forces acting on foundations, What are the Forces Acting on Fo...

What are the Forces Acting on Foundations Foundations are normally subjected to vertical loads which are resisted by compressive stress generated in the soil. However, the acti

Explain carnot cycle, Explain modified Rankine cycle in detail with T-S and...

Explain modified Rankine cycle in detail with T-S and p-v diagrams. Explain Carnot cycle in detail with P-V and T-S diagram, and also write down expression for work ratio, therm

Gear, in the spiral or helical gears- have meshing gear different helix ang...

in the spiral or helical gears- have meshing gear different helix angle?

Magnitude of the normal force, A Mercedes-Benz 300SL (m = 1600 kg) is parke...

A Mercedes-Benz 300SL (m = 1600 kg) is parked on a road that rises 20° above the horizontal. (a) What is the static frictional force that the ground exerts on the tires? (b) Wh

Computer integrated manufacturing, the component of computer integrated man...

the component of computer integrated manufacturing with the diagram

Explain the working of radial drilling machine, Normal 0 false ...

Normal 0 false false false EN-IN X-NONE X-NONE MicrosoftInternetExplorer4

Strength of materials, derive the torsion formula as (torsion divided by ra...

derive the torsion formula as (torsion divided by radius) is equal to (modulus of rigidity multiplied by twist of angle all divided by the length of a cylinder)

Breakwater , Let consider the breakwater configuration shown in the figure ...

Let consider the breakwater configuration shown in the figure below. The incident wave conditions at the breakwater are a wave height of 1.5m, wave period of 7.0s and a wave crest

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd