Evaluate negative infinity, Mathematics

Assignment Help:

Evaluate both of the following limits.

137_limit.png

Solution : Firstly, the only difference among these two is that one is going to +ve infinity and the other is going to negative infinity.  Sometimes this small difference will influence then value of the limit and at other times it won't.

Let's begin with the first limit and since with our first set of examples it may be tempting to just "plug" in the infinity.  As both the numerator & denominator are polynomials we can use the above fact to find out the behavior of each.  Doing this gives,

127_limit1.png

This is still another indeterminate form.  In this case we may be tempted to say that the limit is infinity (due to the infinity in the numerator), zero (due to the infinity in the denominator) or -1 (since something divided by itself is one). There are three separate arithmetic "rules" at work here & without work there is no way to know which "rule" will be accurate and to make matters worse it's possible that none of them might work and we might obtain a completely different answer, say -2/5 to pick a number totally at random.

Hence, when we have a polynomial divided by a polynomial we will proceed much as we did with only polynomials. First we identify the largest power of x in the denominator (and yes, we just look at the denominator for this) and then we factor this out of the numerator and denominator both.  Doing this for the first limit gives,

236_limit2.png

Once we've done it we can cancel the x- from the numerator and the denominator both and then utilizes the Fact 1 above to take the limit of all the remaining terms. it gives,

1961_limit3.png

=  2 + 0 + 0 / -5 + 0

= - 2 /5

1823_limit4.png

In this the indeterminate form was neither of the "obvious" option of infinity, zero, or -1 so be careful with make these kinds of supposition with this kind of indeterminate forms.

The second limit is done in alike fashion.  However, Notice that nowhere in the work for the first limit did we in fact use the fact that the limit was going to plus infinity.  In this it doesn't matter which infinity we are going towards we will obtain the similar value for the limit.


Related Discussions:- Evaluate negative infinity

Proof of sum-difference of two functions, Proof of Sum/Difference of Two Fu...

Proof of Sum/Difference of Two Functions : (f(x) + g(x))′  = f ′(x) +  g ′(x)  It is easy adequate to prove by using the definition of the derivative.  We will start wi

Relationship between inverse and sine function, Relationship between the in...

Relationship between the inverse sine function and the sine function We have the given relationship among the inverse sine function and the sine function.

Logorithms, log base 5 (3-2x) + log base 5 (2+x) = 1

log base 5 (3-2x) + log base 5 (2+x) = 1

Simple interest, find the simple interest on Rs. 68,000 at 50/3 per annum f...

find the simple interest on Rs. 68,000 at 50/3 per annum for 9 month

Find out the hydrostatic force on the triangular plate, Find out the hydros...

Find out the hydrostatic force on the following triangular plate that is submerged in water as displayed. Solution The first thing to do here is set up an axis system

Probability, If a school has lockers with 50 numbers on each co...

If a school has lockers with 50 numbers on each combination lock, how many possible combinations using three numbers are there.

Precalulus, Solve the equation for exact solutions over the interval [o,2Pi...

Solve the equation for exact solutions over the interval [o,2Pi] 2 sec x + 1 = sec x + 3 Some one please help!!!

Estimate whose time was the fastest, Nancy, Jennifer, Alex, and Joy ran a r...

Nancy, Jennifer, Alex, and Joy ran a race. Nancy's time was 50.24 seconds, Jennifer's was 50.32, Alex's was 50.9, and Joy's was 50.2. Whose time was the fastest? The fastest ti

Chp 8 Study, Center and Radius 1)(x+2)^2-(y-3)^2=4

Center and Radius 1)(x+2)^2-(y-3)^2=4

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd