Evaluate negative infinity, Mathematics

Assignment Help:

Evaluate both of the following limits.

137_limit.png

Solution : Firstly, the only difference among these two is that one is going to +ve infinity and the other is going to negative infinity.  Sometimes this small difference will influence then value of the limit and at other times it won't.

Let's begin with the first limit and since with our first set of examples it may be tempting to just "plug" in the infinity.  As both the numerator & denominator are polynomials we can use the above fact to find out the behavior of each.  Doing this gives,

127_limit1.png

This is still another indeterminate form.  In this case we may be tempted to say that the limit is infinity (due to the infinity in the numerator), zero (due to the infinity in the denominator) or -1 (since something divided by itself is one). There are three separate arithmetic "rules" at work here & without work there is no way to know which "rule" will be accurate and to make matters worse it's possible that none of them might work and we might obtain a completely different answer, say -2/5 to pick a number totally at random.

Hence, when we have a polynomial divided by a polynomial we will proceed much as we did with only polynomials. First we identify the largest power of x in the denominator (and yes, we just look at the denominator for this) and then we factor this out of the numerator and denominator both.  Doing this for the first limit gives,

236_limit2.png

Once we've done it we can cancel the x- from the numerator and the denominator both and then utilizes the Fact 1 above to take the limit of all the remaining terms. it gives,

1961_limit3.png

=  2 + 0 + 0 / -5 + 0

= - 2 /5

1823_limit4.png

In this the indeterminate form was neither of the "obvious" option of infinity, zero, or -1 so be careful with make these kinds of supposition with this kind of indeterminate forms.

The second limit is done in alike fashion.  However, Notice that nowhere in the work for the first limit did we in fact use the fact that the limit was going to plus infinity.  In this it doesn't matter which infinity we are going towards we will obtain the similar value for the limit.


Related Discussions:- Evaluate negative infinity

Function that computes the product of two matrices, Write a function that c...

Write a function that computes the product of two matrices, one of size m × n, and the other of size n × p. Test your function in a program that passes the following two matrices t

Determine if the three vectors lie in similar plane or not, Determine if th...

Determine if the three vectors a → = (1, 4, -7), b → = (2, -1, 4) and c → = (0, -9, 18) lie in similar plane or not. Solution Thus, as we noted prior to this example al

Abstract Algebra, let R be a (noncommutative) ring. Given that a,b and a+b ...

let R be a (noncommutative) ring. Given that a,b and a+b ? R are all units, prove that a^(-1)+b^(-1) is a unit

Example of cartesian coordinate graph, Example of Cartesian coordinate Grap...

Example of Cartesian coordinate Graph: Example:   The temperature of water flowing in a high pressure line was measured at regular intervals.  Plot the subsequent recorded da

Marginal probability, Marginal Probability Probability of event A happe...

Marginal Probability Probability of event A happening, denoted by P(A), is called single probability, marginal or unconditional probability. Marginal or Uncondi

Integrated marketing, #question.Explain its nature and how it influences th...

#question.Explain its nature and how it influences the integrated marketing communications mix and distinguish between tactical and strategic use of integrated marketing communicat

Describe graphing equations with a positive slope, Describe Graphing Equati...

Describe Graphing Equations with a Positive Slope? There are 3 steps to graphing a linear equation: 1. Identify and plot the y-intercept. 2. Determine the slope. Use the slope

Kurtosis-measure of central tendency, Kurtosis - It is a concept, whic...

Kurtosis - It is a concept, which refers to the degree of peakedness of a described frequency distribution. The degree is generally measured along with reference to general di

Congruence, Write a proff given angle MJL congruent with angle KJL

Write a proff given angle MJL congruent with angle KJL

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd