Evaluate negative infinity, Mathematics

Assignment Help:

Evaluate both of the following limits.

137_limit.png

Solution : Firstly, the only difference among these two is that one is going to +ve infinity and the other is going to negative infinity.  Sometimes this small difference will influence then value of the limit and at other times it won't.

Let's begin with the first limit and since with our first set of examples it may be tempting to just "plug" in the infinity.  As both the numerator & denominator are polynomials we can use the above fact to find out the behavior of each.  Doing this gives,

127_limit1.png

This is still another indeterminate form.  In this case we may be tempted to say that the limit is infinity (due to the infinity in the numerator), zero (due to the infinity in the denominator) or -1 (since something divided by itself is one). There are three separate arithmetic "rules" at work here & without work there is no way to know which "rule" will be accurate and to make matters worse it's possible that none of them might work and we might obtain a completely different answer, say -2/5 to pick a number totally at random.

Hence, when we have a polynomial divided by a polynomial we will proceed much as we did with only polynomials. First we identify the largest power of x in the denominator (and yes, we just look at the denominator for this) and then we factor this out of the numerator and denominator both.  Doing this for the first limit gives,

236_limit2.png

Once we've done it we can cancel the x- from the numerator and the denominator both and then utilizes the Fact 1 above to take the limit of all the remaining terms. it gives,

1961_limit3.png

=  2 + 0 + 0 / -5 + 0

= - 2 /5

1823_limit4.png

In this the indeterminate form was neither of the "obvious" option of infinity, zero, or -1 so be careful with make these kinds of supposition with this kind of indeterminate forms.

The second limit is done in alike fashion.  However, Notice that nowhere in the work for the first limit did we in fact use the fact that the limit was going to plus infinity.  In this it doesn't matter which infinity we are going towards we will obtain the similar value for the limit.


Related Discussions:- Evaluate negative infinity

How to solve lim 1-cos(x)/1-cos(4x) as x tends to zero, Use L''hopital''s r...

Use L''hopital''s rule  since lim X-->0  1-cos(x)/1-cos(4x)  is in the indeterminate form 0/0 when we apply the limt so by l''hoptital''s rule differentiate the numerator and den

Ordinary differential equations, Verify Liouville''s formula for y^ prime p...

Verify Liouville''s formula for y^ prime prime prime -y^ prime prime - y'' + y = 0 in [0, 1]

Decimals, 0.875 of a number is 2282. What is the number ?

0.875 of a number is 2282. What is the number ?

LASPEYRES AND PAASCHE, advantages and disadvantages of laspeyres and paasch...

advantages and disadvantages of laspeyres and paasche

Operations Research inventory , A firm buys a product using the price sched...

A firm buys a product using the price schedule given in the table: The company estimate holding costs at 10% of the purchase price per year and ordering costs at $40 per order .

Algebra function., problem to understand an problem; f(X-2)=X+3 / X-4

problem to understand an problem; f(X-2)=X+3 / X-4

Sin[cot-1{cos(tan-1x)}], sin (cot -1 {cos (tan -1 x)}) tan -1 x = A  ...

sin (cot -1 {cos (tan -1 x)}) tan -1 x = A  => tan A =x sec A = √(1+x 2 ) ==>  cos A = 1/√(1+x 2 )    so   A =  cos -1 (1/√(1+x 2 )) sin (cot -1 {cos (tan -1 x)}) = s

Polynomials, write the zeros of underroot3power2 -8x+4underroot 3

write the zeros of underroot3power2 -8x+4underroot 3

Definite integral, from 0->1: Int sqrt(1-x^2) Solution) I=∫sqrt(1-x 2 ...

from 0->1: Int sqrt(1-x^2) Solution) I=∫sqrt(1-x 2 )dx = sqrt(1-x 2 )∫dx - ∫{(-2x)/2sqrt(1-x 2 )}∫dx ---->(INTEGRATION BY PARTS)        = x√(1-x 2 ) - ∫-x 2 /√(1-x 2 ) Let

Determine the approximate raw act score, Using the same mean and standard d...

Using the same mean and standard deviation as mean m = 20.1 and a standard deviation s = 5.8. Joe was informed that he scored at the 68 th percentile on the ACT, what was Joe's ap

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd