Evaluate negative infinity, Mathematics

Assignment Help:

Evaluate both of the following limits.

137_limit.png

Solution : Firstly, the only difference among these two is that one is going to +ve infinity and the other is going to negative infinity.  Sometimes this small difference will influence then value of the limit and at other times it won't.

Let's begin with the first limit and since with our first set of examples it may be tempting to just "plug" in the infinity.  As both the numerator & denominator are polynomials we can use the above fact to find out the behavior of each.  Doing this gives,

127_limit1.png

This is still another indeterminate form.  In this case we may be tempted to say that the limit is infinity (due to the infinity in the numerator), zero (due to the infinity in the denominator) or -1 (since something divided by itself is one). There are three separate arithmetic "rules" at work here & without work there is no way to know which "rule" will be accurate and to make matters worse it's possible that none of them might work and we might obtain a completely different answer, say -2/5 to pick a number totally at random.

Hence, when we have a polynomial divided by a polynomial we will proceed much as we did with only polynomials. First we identify the largest power of x in the denominator (and yes, we just look at the denominator for this) and then we factor this out of the numerator and denominator both.  Doing this for the first limit gives,

236_limit2.png

Once we've done it we can cancel the x- from the numerator and the denominator both and then utilizes the Fact 1 above to take the limit of all the remaining terms. it gives,

1961_limit3.png

=  2 + 0 + 0 / -5 + 0

= - 2 /5

1823_limit4.png

In this the indeterminate form was neither of the "obvious" option of infinity, zero, or -1 so be careful with make these kinds of supposition with this kind of indeterminate forms.

The second limit is done in alike fashion.  However, Notice that nowhere in the work for the first limit did we in fact use the fact that the limit was going to plus infinity.  In this it doesn't matter which infinity we are going towards we will obtain the similar value for the limit.


Related Discussions:- Evaluate negative infinity

Interpretations of derivatives, Interpretations of derivatives. Exampl...

Interpretations of derivatives. Example:   Find out the equation of the tangent line to                                       x 2 + y 2   =9 at the point (2, √5 ) .

Differentiate quotient rule functions, Example of quotient rule : Let's no...

Example of quotient rule : Let's now see example on quotient rule.  In this, unlike the product rule examples, some of these functions will require the quotient rule to get the de

What is the square root of 36, What is the square root of 36? To search...

What is the square root of 36? To search the square root (√) you ask yourself, "What number multiplied through itself gives me 36?" 6 .6 = 36; thus, 6 is the square root of 36.

Determine the volume of the pool, An inground pool is pooring with water. T...

An inground pool is pooring with water. The shallow end is 3 ft deep and gradually slopes to the deepest end, which is 10 ft deep. The width of the pool is 30 ft and the length is

Rolle''s theorem, The curve (y+1) 2 =x 2 passes by the points (1, 0) and ...

The curve (y+1) 2 =x 2 passes by the points (1, 0) and (- 1, 0). Does Rolle's Theorem clarify the conclusion that  dy dx  vanishes for some value of x in the interval -1≤x≤1?

Evaluate the subsequent inverse trigonometric functions, Evaluate the subse...

Evaluate the subsequent inverse trigonometric functions: Evaluate the subsequent inverse trigonometric functions. arcsin   0.3746 22° arccos  0.3746 69° arctan  0.383

Integers, need answer to integers that equal 36

need answer to integers that equal 36

Logarithems , y=x4/4lnx-x4/16 then dy/dx=? Solution) dy/dx=-x^3/4(2/lnx-...

y=x4/4lnx-x4/16 then dy/dx=? Solution) dy/dx=-x^3/4(2/lnx-1)^2.    ^ means power

Determine the range of given algorithm, The division algorithm says that wh...

The division algorithm says that when a is divided by b, a unique quotient and remainder is obtained. For a fixed integer b where b ≥ 2, consider the function f : Z → Z given by f(

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd