Evaluate negative infinity, Mathematics

Assignment Help:

Evaluate both of the following limits.

137_limit.png

Solution : Firstly, the only difference among these two is that one is going to +ve infinity and the other is going to negative infinity.  Sometimes this small difference will influence then value of the limit and at other times it won't.

Let's begin with the first limit and since with our first set of examples it may be tempting to just "plug" in the infinity.  As both the numerator & denominator are polynomials we can use the above fact to find out the behavior of each.  Doing this gives,

127_limit1.png

This is still another indeterminate form.  In this case we may be tempted to say that the limit is infinity (due to the infinity in the numerator), zero (due to the infinity in the denominator) or -1 (since something divided by itself is one). There are three separate arithmetic "rules" at work here & without work there is no way to know which "rule" will be accurate and to make matters worse it's possible that none of them might work and we might obtain a completely different answer, say -2/5 to pick a number totally at random.

Hence, when we have a polynomial divided by a polynomial we will proceed much as we did with only polynomials. First we identify the largest power of x in the denominator (and yes, we just look at the denominator for this) and then we factor this out of the numerator and denominator both.  Doing this for the first limit gives,

236_limit2.png

Once we've done it we can cancel the x- from the numerator and the denominator both and then utilizes the Fact 1 above to take the limit of all the remaining terms. it gives,

1961_limit3.png

=  2 + 0 + 0 / -5 + 0

= - 2 /5

1823_limit4.png

In this the indeterminate form was neither of the "obvious" option of infinity, zero, or -1 so be careful with make these kinds of supposition with this kind of indeterminate forms.

The second limit is done in alike fashion.  However, Notice that nowhere in the work for the first limit did we in fact use the fact that the limit was going to plus infinity.  In this it doesn't matter which infinity we are going towards we will obtain the similar value for the limit.


Related Discussions:- Evaluate negative infinity

Factoring quadratic polynomials, Primary, note that quadratic is another te...

Primary, note that quadratic is another term for second degree polynomial. Thus we know that the largest exponent into a quadratic polynomial will be a2. In these problems we will

MATH HONORS, HOW DO YOU DO BAR DIAGRAMS ANDESTIMATE IT WITH PERCENTS

HOW DO YOU DO BAR DIAGRAMS ANDESTIMATE IT WITH PERCENTS

VECTORS, OQRS IS A QUADRILATERAL SUCH THAT OQ= -6,3 OR= -3,7 AND OS= 1,5. T...

OQRS IS A QUADRILATERAL SUCH THAT OQ= -6,3 OR= -3,7 AND OS= 1,5. T IS ON OQ SUCH THAT OT: TQ= 1:2 PROVE THAT QRST IS AA PARALLEGRRAM

Formulas of summation notation, Formulas Now there are a couple of nice...

Formulas Now there are a couple of nice formulas which we will get useful in a couple of sections. Consider that these formulas are only true if starting at i = 1. You can, obv

Assignment, Is there any assignment work available for mathematics?

Is there any assignment work available for mathematics?

Real constant and difference equation, Derive for the filter from z=a and p...

Derive for the filter from z=a and poles at z=b andz=c, where a, b, c are the real constants the corresponding difference equation. For what values of parameters a, b, and c the fi

The achievements from math, i love math..but i am afraid to study it... i m...

i love math..but i am afraid to study it... i mean i ma afraid that it may leave me in clay...what can you suggest me?

Examples of complex numbers, Following are some examples of complex numbers...

Following are some examples of complex numbers. 3 + 5i                                                 √6 -10i (4/5) + 1           16i                     113 The last t

Product, a product can be anything including physical good,services,places,...

a product can be anything including physical good,services,places,experience,nations,organizations,properties,information.discuss the statement?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd