Evaluate infinity limit into the polynomial , Mathematics

Assignment Help:

Example   Evaluate following limits.

863_limit80.png

Solution

Here our first thought is probably to just "plug" infinity into the polynomial & "evaluate" every term to finds out the value of the limit.  This is pretty simple to illustrate what each term will do in the limit and so this look likes an obvious step.

Hence, let's see what we obtain if we do that.  As x approaches infinity, then x to a power can just get larger and the coefficient on each of the term (the first and third) will jsut make the term even larger. Hence, if we look at what each of the term is doing in the limit we get the following,

2012_Limit81.png

Now, we've obtained a small, although easily fixed, problem to deal along with. Probably we are tempted to say that the answer is zero (since we have infinity minus infinity) or possibly -∞ (as we're subtracting two infinities off of one infinity).  Though, in both of the cases we'd be wrong

Infinities only don't always behave as real numbers do while it comes to arithmetic.  Without more work there is no way to know what ∞ -∞ will be and hence we really have to be careful along with this kind of problem. 

Hence, we require a way to get around this problem.  What we'll do here is factor out the largest power of x out of the whole polynomial as given,

1597_limit83.png

Now for each terms we have,

2365_limit84.png

The first limit is obviously infinity and for the second limit we'll use the fact above on the previous two terms. Hence by busing Fact 2 from the previous section we see value of the limit will be,

Fact 2

If  p ( x ) = an xn + an-1 xn -1 + ....... + a 1x + a0 is a polynomial of degree n (that means  an  ≠ 0 )  then,

959_limit85.png

What this fact is actually saying is that while we go to take a limit at infinity for a polynomial then all we have to really do is look at the term along with the largest power and asks what that term is doing in the limit as the polynomial will have the similar behavior.

Let's now move into some more complexes limits.


Related Discussions:- Evaluate infinity limit into the polynomial

Find the angle of elevation, A 50-foot pole casts a shadow on the ground. ...

A 50-foot pole casts a shadow on the ground. a) Express the angle of elevation θ of the sun as a function of the length s of the shadow. (Hint you may wish to draw this firs

Calculate the probability, Calculate the introduction to Probability? P...

Calculate the introduction to Probability? Probability refers to the chance that an event will happen. Probability is presented as the ratio of the number of ways an event can

Statistical models in simulation, Players and spectators enter a ballpark a...

Players and spectators enter a ballpark according to independent Poisson processes having respective rates 5 and 20 per hour. Starting at an arbitrary time, compute the probability

Algebra 1, pls help me solve this step by step 6*11(7+3)/5-(6-4)

pls help me solve this step by step 6*11(7+3)/5-(6-4)

Second order differential equations, In the earlier section we looked at fi...

In the earlier section we looked at first order differential equations. In this section we will move on to second order differential equations. Just as we did in the previous secti

Integration, R={(r, ?):1=r= 2cos? ,-p/3= ? =p/3

R={(r, ?):1=r= 2cos? ,-p/3= ? =p/3

Which of the following binomials could represent the length, The area of Mr...

The area of Mr. Smith's rectangular classroom is x 2 - 25. Which of the following binomials could represent the length and the width of the room? Since area of a rectangle is

How to multiplying monomials, How to Multiplying Monomials? To multiply...

How to Multiplying Monomials? To multiply monomials: Step 1: Multiply the coefficients. Step 2: Multiply the like variables by adding their exponents. Step 3: Multiply ans

Describe common phrases to represent math operations, Describe Common Phras...

Describe Common Phrases to Represent Math Operations? The table below shows the common phrases used in word problems to represent addition, subtraction, multiplication, and div

Illustration of rank correlation coefficient, Illustration of Rank Correlat...

Illustration of Rank Correlation Coefficient Sometimes numerical data such refers to the quantifiable variables may be described after which a rank correlation coefficient may

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd