Evaluate infinity limit into the polynomial , Mathematics

Assignment Help:

Example   Evaluate following limits.

863_limit80.png

Solution

Here our first thought is probably to just "plug" infinity into the polynomial & "evaluate" every term to finds out the value of the limit.  This is pretty simple to illustrate what each term will do in the limit and so this look likes an obvious step.

Hence, let's see what we obtain if we do that.  As x approaches infinity, then x to a power can just get larger and the coefficient on each of the term (the first and third) will jsut make the term even larger. Hence, if we look at what each of the term is doing in the limit we get the following,

2012_Limit81.png

Now, we've obtained a small, although easily fixed, problem to deal along with. Probably we are tempted to say that the answer is zero (since we have infinity minus infinity) or possibly -∞ (as we're subtracting two infinities off of one infinity).  Though, in both of the cases we'd be wrong

Infinities only don't always behave as real numbers do while it comes to arithmetic.  Without more work there is no way to know what ∞ -∞ will be and hence we really have to be careful along with this kind of problem. 

Hence, we require a way to get around this problem.  What we'll do here is factor out the largest power of x out of the whole polynomial as given,

1597_limit83.png

Now for each terms we have,

2365_limit84.png

The first limit is obviously infinity and for the second limit we'll use the fact above on the previous two terms. Hence by busing Fact 2 from the previous section we see value of the limit will be,

Fact 2

If  p ( x ) = an xn + an-1 xn -1 + ....... + a 1x + a0 is a polynomial of degree n (that means  an  ≠ 0 )  then,

959_limit85.png

What this fact is actually saying is that while we go to take a limit at infinity for a polynomial then all we have to really do is look at the term along with the largest power and asks what that term is doing in the limit as the polynomial will have the similar behavior.

Let's now move into some more complexes limits.


Related Discussions:- Evaluate infinity limit into the polynomial

Geometry, the figure is a rectangle with angle y=60. Find angle x

the figure is a rectangle with angle y=60. Find angle x

Calculate the cost make use of trigonometric functions, In this task you ar...

In this task you are required to make use of trigonometric functions, research and use the Monte Carlo method of integration to determine areas under curves and perform calculation

Function notation, Function notation: Next we have to take a rapid look at...

Function notation: Next we have to take a rapid look at function notation. Function notation is nothing more than way of writing the y in a function which will let to simplify not

Which expression has an answer of 18, Which expression has an answer of 18?...

Which expression has an answer of 18? Use the order of operations and try every option. The first option results in 14 since 2 . 5 = 10, then 10 + 4 = 14. This does not work. T

Demonstrates that f ( x ) = 4 x5 + x3 + 7 x - 2 mean value, Demonstrates th...

Demonstrates that f ( x ) = 4 x 5 + x 3 + 7 x - 2 has accurately one real root. Solution From basic Algebra principles we know that since f (x) is a 5 th degree polynomi

Pie chart, i have this data 48 degree, 72 degree, 43.2degree, 24degree , 40...

i have this data 48 degree, 72 degree, 43.2degree, 24degree , 40.8degree on this make a pie chart

Square and square root., the value of square root of 200multiplied by squar...

the value of square root of 200multiplied by square root of 5=

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd