Evaluate infinity limit into the polynomial , Mathematics

Assignment Help:

Example   Evaluate following limits.

863_limit80.png

Solution

Here our first thought is probably to just "plug" infinity into the polynomial & "evaluate" every term to finds out the value of the limit.  This is pretty simple to illustrate what each term will do in the limit and so this look likes an obvious step.

Hence, let's see what we obtain if we do that.  As x approaches infinity, then x to a power can just get larger and the coefficient on each of the term (the first and third) will jsut make the term even larger. Hence, if we look at what each of the term is doing in the limit we get the following,

2012_Limit81.png

Now, we've obtained a small, although easily fixed, problem to deal along with. Probably we are tempted to say that the answer is zero (since we have infinity minus infinity) or possibly -∞ (as we're subtracting two infinities off of one infinity).  Though, in both of the cases we'd be wrong

Infinities only don't always behave as real numbers do while it comes to arithmetic.  Without more work there is no way to know what ∞ -∞ will be and hence we really have to be careful along with this kind of problem. 

Hence, we require a way to get around this problem.  What we'll do here is factor out the largest power of x out of the whole polynomial as given,

1597_limit83.png

Now for each terms we have,

2365_limit84.png

The first limit is obviously infinity and for the second limit we'll use the fact above on the previous two terms. Hence by busing Fact 2 from the previous section we see value of the limit will be,

Fact 2

If  p ( x ) = an xn + an-1 xn -1 + ....... + a 1x + a0 is a polynomial of degree n (that means  an  ≠ 0 )  then,

959_limit85.png

What this fact is actually saying is that while we go to take a limit at infinity for a polynomial then all we have to really do is look at the term along with the largest power and asks what that term is doing in the limit as the polynomial will have the similar behavior.

Let's now move into some more complexes limits.


Related Discussions:- Evaluate infinity limit into the polynomial

The perimeter square can be expressed as x + 4 estimate x, The perimeter of...

The perimeter of a square can be expressed as x + 4. If one side of the square is 24, what is the value of x? Since the perimeter of the square is x + 4, and a square has four

Arthemetic progreession, ball are arranged in rows to form an equilateral t...

ball are arranged in rows to form an equilateral triangle .the firs row consists of one abll,the second of two balls,and so on.If 669 more balls are added,then all the balls canbe

1trig, how do you find the tan, sin, and cos.

how do you find the tan, sin, and cos.

Characteristics of exponential smoothing, Characteristics of Exponential Sm...

Characteristics of Exponential Smoothing 1. More weight is described to the most recent data. 2. All past data are incorporated not like in moving averages. 3. Les

Interpretation, Interpretation A high value of r as +0.9 or - 0...

Interpretation A high value of r as +0.9 or - 0.9 only shows a strong association among the two variables but doesn't imply that there is a causal relationship that is

Illustrate Ionic solids, Ionic solids, which have anionic vacancies because...

Ionic solids, which have anionic vacancies because of metal excess defect develop colour. Illustrate with the help of a suitable example.

Square of a number added to 25 equals 10 times the number, The square of a ...

The square of a number added to 25 equals 10 times the number. What is the number? Let x = the number.  The statement, "The square of a number added to 25 equals 10 times the n

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd