Evaluate infinity limit into the polynomial , Mathematics

Assignment Help:

Example   Evaluate following limits.

863_limit80.png

Solution

Here our first thought is probably to just "plug" infinity into the polynomial & "evaluate" every term to finds out the value of the limit.  This is pretty simple to illustrate what each term will do in the limit and so this look likes an obvious step.

Hence, let's see what we obtain if we do that.  As x approaches infinity, then x to a power can just get larger and the coefficient on each of the term (the first and third) will jsut make the term even larger. Hence, if we look at what each of the term is doing in the limit we get the following,

2012_Limit81.png

Now, we've obtained a small, although easily fixed, problem to deal along with. Probably we are tempted to say that the answer is zero (since we have infinity minus infinity) or possibly -∞ (as we're subtracting two infinities off of one infinity).  Though, in both of the cases we'd be wrong

Infinities only don't always behave as real numbers do while it comes to arithmetic.  Without more work there is no way to know what ∞ -∞ will be and hence we really have to be careful along with this kind of problem. 

Hence, we require a way to get around this problem.  What we'll do here is factor out the largest power of x out of the whole polynomial as given,

1597_limit83.png

Now for each terms we have,

2365_limit84.png

The first limit is obviously infinity and for the second limit we'll use the fact above on the previous two terms. Hence by busing Fact 2 from the previous section we see value of the limit will be,

Fact 2

If  p ( x ) = an xn + an-1 xn -1 + ....... + a 1x + a0 is a polynomial of degree n (that means  an  ≠ 0 )  then,

959_limit85.png

What this fact is actually saying is that while we go to take a limit at infinity for a polynomial then all we have to really do is look at the term along with the largest power and asks what that term is doing in the limit as the polynomial will have the similar behavior.

Let's now move into some more complexes limits.


Related Discussions:- Evaluate infinity limit into the polynomial

Determine the eigenvalues and eigenvectors of the matrix, Determine the eig...

Determine the eigenvalues and eigenvectors of the subsequent matrix. Solution : The first thing that we require to do is determine the eigen-values. It means we require

If oa = ob = 14cm, If OA = OB = 14cm, ∠AOB=90 o , find the area of shaded r...

If OA = OB = 14cm, ∠AOB=90 o , find the area of shaded region.  (Ans:21cm 2 ) Ans:    Area of the shaded region = Area of ? AOB - Area of Semi Circle = 1/2  x 14 x

Trigonmetry, On your geometry test you have two triangles: ?ABC and ?MNO. Y...

On your geometry test you have two triangles: ?ABC and ?MNO. You are told that ?A ? ? M and that ?B ? ? N. Which statement is also true?

Computing limits , Computing Limits :In the earlier section we saw that t...

Computing Limits :In the earlier section we saw that there is a large class of function which allows us to use to calculate limits. However, there are also several limits for whi

Determine series is convergent or divergent by root test, Find out if the f...

Find out if the following series is convergent or divergent. Solution There really is not very much to these problems another than calculating the limit and then usin

GEOMETRY, DIFFERENCE BETWEEN RIGHT ANGLE AND SCALENE

DIFFERENCE BETWEEN RIGHT ANGLE AND SCALENE

..percentage, how to express 15/4 into percentage

how to express 15/4 into percentage

Probability., an insurance salesman sells policies to 5 men, all of identic...

an insurance salesman sells policies to 5 men, all of identical age in good health. the probability that a man of this particular age will be alive 30 years hence is 2/3.Find the p

Indicestitle.., Advantages and disadvantages of paasche indices

Advantages and disadvantages of paasche indices

What is the area covered through the motion of the fan, The arm of a ceilin...

The arm of a ceiling fan measures a length of 25 in. What is the area covered through the motion of the fan blades while turned on? (π = 3.14) The ceiling fan follows a circula

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd