Estimation of population proportions, Mathematics

Assignment Help:

Estimation of population proportions

This form of estimation applies at the times while information cannot be described as a mean or as a measure but only as a percentage or fraction ,The sampling theory stipulates that if repeated large random samples are consider from a population and the sample proportion "p' will be normally distributed along with mean equal to the population proportion and standard error equal to

Sp = √{(pq)/n}  = Standard error for sampling of population proportions

Whereas n is the sample size and q = 1 - p.

The procedure for estimation a proportion is similar to that for estimating a mean; we simply have a different formula for calculating standard.

Illustration 1

In a sample of 800 candidates, 560 were male. Estimate the population proportion at 95 percent confidence level.

Solution

Now

Sample proportion (P) = 560/800  = 0.70

            q = 1 - p = 1 - 0.70  = 0.30

            n = 800

              √{(pq)/n} = √{(0.70)(0.30)/800} 

Sp = 0.016

Population proportion

= P ± 1.96 Sp whereas 1.96 = Z.

= 0.70 ± 1.96 (0.016)

= 0.70 ± 0.03

= 0.67 to 0.73

= between 67 percent to 73percent

Illustration 2

A sample of 600 accounts was taken to test the accuracy of posting and balancing of accounts whereas in 45 mistakes were found. Determine the population proportion. Employ 99 percent level of confidence

Solution

Now

n = 600;  p = 45/600  =  0.075

            q = 1 - 0.075 = 0.925

√{(pq)/n} = √{(0.075)(0.925)/600} 

= 0.011

Population proportion

= P ± 2.58 (Sp)

= 0.075 ± 2.58 (0.011)

 

= 0.075 ± 0.028

= 0.047 to 0.10

= between 4.7 percent to 10 percent


Related Discussions:- Estimation of population proportions

Find the solution to initial value problem, Illustration:   Find the soluti...

Illustration:   Find the solution to the subsequent IVP. ty' + 2y = t 2 - t + 1,      y(1) = ½ Solution : Initially divide via the t to find the differential equation in

Real and distinct roots, Now we start solving constant linear, coefficient ...

Now we start solving constant linear, coefficient and second order differential and homogeneous equations. Thus, let's recap how we do this from the previous section. We start alon

Fourier series - partial differential equations, Fourier series - Partial D...

Fourier series - Partial Differential Equations One more application of series arises in the study of Partial Differential Equations.  One of the more generally employed method

Tangent lines, Recall also which value of the derivative at a specific valu...

Recall also which value of the derivative at a specific value of t provides the slope of the tangent line to the graph of the function at that time, t. Thus, if for some time t the

Probability, Mike sells on the average 15 newspapers per week (Monday – Fri...

Mike sells on the average 15 newspapers per week (Monday – Friday). Find the probability that 2.1 In a given week he will sell all the newspapers

Work in volume problems, Work : It is the last application of integr...

Work : It is the last application of integral which we'll be looking at under this course. In this section we'll be looking at the amount of work which is done through a forc

SURFACE AREA AND VOLUMES, Metallic spheres of radii 6 centimetre, 8 centime...

Metallic spheres of radii 6 centimetre, 8 centimetre and 10 centimetres respectively are melted to form a single solid sphere. Find the radius of the resulting sphere.

Trigonometry, trigonometric ratios of sum and difference of two angles

trigonometric ratios of sum and difference of two angles

Mean is 8.32 find the median, In a frequency distribution mode is 7.88, mea...

In a frequency distribution mode is 7.88, mean is 8.32 find the median.  (Ans: 8.17) Ans:  Mode = 3 median - 2 mean 7.88 = 3 median - 2 x 8.32 7.88 +16.64 = 3 median

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd