Estimate the position of an object at any time, Mathematics

Assignment Help:

The position of an object at any time t (in hours) is specified by,

s (t ) = 2t 3 - 21t 2 + 60t -10

Find out when the object is moving to the right and whiles the object is moving to the left.

 Solution : The single way that we'll know for sure which direction the object is moving is to contain the velocity in hand.  Recall that if the velocity is +ve the object is moving off towards the right and if the velocity is negative then the object is moving toward the left.

Thus, we need the derivative as the derivative is the velocity of the object. The derivative is following,

s′ (t ) = 6t 2 - 42t + 60 = 6 (t 2 - 7t + 10)= 6 (t - 2) (t - 5)

The cause for factoring the derivative will be clear shortly.

Now, we have to determine where the derivative is positive & where the derivative is negative. There are many ways to do this.

Since polynomials are continuous we  already know from the  Intermediate Value Theorem that if the polynomial ever changes sign then it should have first gone through zero.  hence, if we knew where the derivative was zero we would know the just points where the derivative should change sign.

We can illustrates from the factored form of the derivative which the derivative will be zero at t = 2 and t = 5 .  Let's plot these points on a number line.

181_tangent line.png

Now, we can illustrate that these two points divide the number line in three distinct regions.  In each region we know that the derivative will be the similar sign.  Recall the derivative can only change sign at the two points which are utilized to divide the number line up into the regions.

So, all that we have to do is to check the derivative at a test point in each of region and the derivative in that region will have the similar sign as the test point. Following is the number line along with the test points and results illustrated.

453_tangent line1.png

Following are the intervals wherein the derivative is positive and negative.

positive : -∞ < t < 2  &  5 < t < ∞

negative :         2 < t < 5

We involved negative t's here since we could even though they may not make much sense for this problem.  Once we know it we also can answer the question. The object is moving to the right & left in the given intervals.

moving to the right : -∞ < t < 2  &  5 < t < ∞

moving to the left  :    2 < t < 5


Related Discussions:- Estimate the position of an object at any time

What is the integratin of 1/sin2x?, ∫1/sin2x dx = ∫cosec2x dx = 1/2 log[cos...

∫1/sin2x dx = ∫cosec2x dx = 1/2 log[cosec2x - cot2x] + c = 1/2 log[tan x] + c Detailed derivation of ∫cosec x dx = ∫cosec x(cosec x - cot x)/(cosec x - cot x) dx = ∫(cosec 2 x

What is the product of the two numbers in terms of x, A number, x, increase...

A number, x, increased through 3 is multiplied by the similar number, x, increased by 4. What is the product of the two numbers in terms of x? The two numbers in terms of x wou

Quadratic equation, how to solve this? y = 7x - 12 y = x2 Solve the sy...

how to solve this? y = 7x - 12 y = x2 Solve the system using substitution.

Mean and standard deviation, Q. Mean and Standard Deviation? Ans. ...

Q. Mean and Standard Deviation? Ans. The normal distribution is totally described if we know the average and standard deviation. - the population mean of the distribu

Example of inverse matrix, Determine the inverse of the following matrix, i...

Determine the inverse of the following matrix, if it exists. We first form the new matrix through tacking onto the 3 x 3 identity matrix to this matrix.  It is, We

Square numbers, determine the square of the following numbers ... a.8 b.13 ...

determine the square of the following numbers ... a.8 b.13 c.17 and d.80

Conclusion of egroff''s theorem and lusin''s theorem, (1) Show that the con...

(1) Show that the conclusion of Egroff's theorem can fail if the measure of the domain E is not finite. (2) Extend the Lusin's Theorem to the case when the measure of the domain E

Combination, three complain forces of magnitudes 20N 30N and 45N

three complain forces of magnitudes 20N 30N and 45N

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd