Estimate how much work is completed in stretching, Mathematics

Assignment Help:

A spring has a natural length of 20 Centimeter. A 40 N force is needed to stretch and hold the spring to a length of 30 Centimeter. How much work is completed in stretching the spring from 35 Centimeter to 38 Centimeter?

Solution : This illustration will need Hooke's Law to find out the force. Law of Hooke tells us that the force needed to stretch a spring a distance of x meters by its natural length is,

F(x) = k x

Here k < 0 is termed as the spring constant.

The first thing that we require to do is find out the spring constant for this spring. We can do which using the initial information.  A force of 40 N is needed to stretch the spring 30Centimeter -20Centimeter = 10 Centimeter = 0.10meter from its natural length. By using Law of Hooke we have,

 40 = 0.10k     ⇒     k = 400

 Therefore as per Hooke's Law the force needed to hold this spring x meters from its natural length,

 F(x) = 400x

 We need to know the work required to stretch the spring from 35Centimeter to 38Centimeter. First we require converting these in distances from the natural length in meters.  Doing this provides us x's of 0.15meter and 0.18meter.

The work is now,

1046_work2.png


Related Discussions:- Estimate how much work is completed in stretching

Lognormal distribution, The Lognormal Distribution If ln(X) is a normal...

The Lognormal Distribution If ln(X) is a normally distributed random variable, then X is said to be a lognormal variable. If P1, P2, P3, ... are the prices of a scrip in per

Unit circle, Unit circle: The unit circle is one of the most valuable tool...

Unit circle: The unit circle is one of the most valuable tools to come out in trig.  Unluckily, most people don't study it as well. Below is the unit circle with just the first

Markup & markdown, if prices are calculatead with a 35% markup based on cos...

if prices are calculatead with a 35% markup based on cost,what is the percent that those prices should be marked down to get back to their original cost?Choose any convenient cost

The mean value theorem for integrals, The Mean Value Theorem for Integrals ...

The Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus, a ∫ b f(x) dx = f(c)(b -a) Proof Let's begin

Solve for, a)Solve for ?, if tan5? = 1. Ans:    Tan 5? = 1        ⇒ ? ...

a)Solve for ?, if tan5? = 1. Ans:    Tan 5? = 1        ⇒ ? =45/5 ⇒ ?=9 o . b)Solve for ? if S i n ?/1 + C os ? + 1 +  C os ?/ S i n ? = 4 . Ans:  S i n ?/1 +

Profit, A wholesaler allows a discount of 20% on the list price to a retail...

A wholesaler allows a discount of 20% on the list price to a retailer. The retailer sells at 5% discount on the list price.If a customer paid Rs 114 for an article,what profit is m

Geometyr, Lines EF and GH are graphed on this coordinate plane. Which point...

Lines EF and GH are graphed on this coordinate plane. Which point is the intersection of lines EF and GH?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd