Equivalences & rewrite rules - artificial intelligence, Computer Engineering

Assignment Help:

Equivalences & Rewrite Rules - artificial intelligence:

Along with allowing us to verify trivial theorems, tautologies make us able to establish that definite sentences are saying the same thing. In precise, if we can show that A <-> B is a tautology then we knows B and A are true for exactly the same models, for example they will have identical columns in a truth table. We say that B and A are logically equivalent, written as the equivalence A ≡ B.

(Clearly ↔ it means the same thing here, so why use 2 different symbols? It is a technical difference: A<->B is a sentence of propositional logic, whereas A B is a claim we make outside the logic.)

In natural language, we could replace the phrase in sentences "There is only 1 Tony Blair" by "Tony Blair is unique",because the phrases mean the similar thing in actual. We can do just the similar in logical languages, with an advantage: because in the sense of beingmore formal, we will have mathematically proved that 2 sentences are equivalent.  This means that no doubt there is not any situation in which  1sentence would be interpreted in a different way to another, which is surely possible with natural language sentences about Tony Blair.

Similaritiesallow us to change 1 sentence into another without changing the meaning, because we know that replacing 1 side of an equivalence with the other will have no effect whatsoever on the semantics: yet it will be true for the same models. Imagine we have a sentence S with a sub expression A, which we write as S[A]. If we know A ≡ B then we maybe sure the semantics of S is not affected if we replace A with B, for instance S[A] ≡ S[B].

Moreover, we may also use A≡B to replace any sub expression of S which is an instance of A. for an example of a propositional expression A is a 'copy' of A where some  of  the  propositions  of  have  been  consistently  replaced  by  new  sub expressions, for example every P has been replaced by Q. We call this replacement a substitution this is a mapping from propositions to expressions. By applying a substitution U to a sentence S, we get a new sentence S.U which is acase of S. It is simple to show that if A ≡ B then A.U ≡ B.U for any substitution For example a case of equivalence is also equivalence. Hence an equivalence A  B allows us to change a sentence S[A'] to a logically equivalent one S[B'] if we have substitution U such as A' = A.U and B' = B.U.

The power to replace sub expressions allows utilize to verify theorems with equivalences: in the above example, given a theorem S[A'] S[B'] we may use the equivalence A ≡ B to rewrite the theorem to the equivalent S[A'] <-> S[A'], which we know to be true. Given a set of equivalences we may prove (or disprove) a complicated theorem by rewriting it to something logically equivalent thatalready we know to be true (or false).

The fact that we may rewrite case of A to case of B is expressed in the rewrite rule A => B. We, of course, can also rewrite Bs to As, so we could use the rewrite rule B => A instead. However, it is easy to see that having an agent use both rules is dangerous, as it could get stuck in a loop A => B => A => B => ... and so on. Hence, we typically utilize just one of the rewrite rules for a specific equivalence (we 'orient' the rule in a single direction). If we do use both then we have to make sure we do not get stuck in a loop.

Apart from proving theorems directly, the other use for rewrite rules is to prepare a statement for use before we find for the proof. This is because some automated deduction techniques require a statement to be in a specific format, and in these cases, we may use a set of rewrite rules to convert the sentence we want to show into a logically equivalent 1 which is in the correct format.

Below are some common equivalence which automated theorem proves can use as rewrite rules. Remember that the rules may be read both ways, but that in practice either (i) just one direction is used or (ii) a loop-check is employed. Notice that also these are true of sentences in propositional logic, so they may also be used for rewriting sentences in first order logic, which is only an extension of propositional logic.


Related Discussions:- Equivalences & rewrite rules - artificial intelligence

Explain auto increment and auto decrement mode, Explain Auto increment and ...

Explain Auto increment and Auto decrement mode  The register is incremented or decremented after (or before) its value is used to access memory.  The address stored in the regi

Realize x-nor gate using nand gate, Q. A. Which gates are called Universa...

Q. A. Which gates are called Universal Gates? Why? B. State and prove any one of the DeMorgen's Laws. Show that these theorems can be extended up to any number of variables.

Formal analysis of visual elements, Formal Analysis: The second step o...

Formal Analysis: The second step of the art critiquing process often begins with an analysis of the artworks formal elements and how they are the organised. The formal elem

What is the size limitation of an access database, Size limitation does not...

Size limitation does not relate to number of records in a table within a database. Forms, reports, macros, and modules also add to database size, but is rather minimal compared to

Minimization of the logic function using NORgates, Minimize the logic funct...

Minimize the logic function F(A, B, C, D) = ∑ m(1,3,5,8,9,11,15) + d(2,13) using NOR gates with help of K-map. Ans. Realization of given expression by using NOR gates: In POS

C, "Super ASCII", if it contains the character frequency equal to their asc...

"Super ASCII", if it contains the character frequency equal to their ascii values. String will contain only lower case alphabets (''a''-''z'') and the ascii values will starts from

Combinational logic circuits, A circuit can be designed to perform manydiff...

A circuit can be designed to perform manydifferent functions e.g.a circuit has 3 inputs A, B and C and 3 outputs:Output X is logic level 1 (or 'high') if one or moreinputs are at l

Quantity amounts (data type quan), A field containing quantity amounts (dat...

A field containing quantity amounts (data type QUAN) must be assigned to a reference table and a reference field. Explain? As a reference table, a system table having all the v

Superscalar processors, Superscalar Processors In scalar processors, on...

Superscalar Processors In scalar processors, only one instruction is implemented per cycle. That means only single instruction is issued per cycle and only single instruction i

Function modules are also external subroutines, Function Modules are also e...

Function Modules are also external Subroutines. True.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd