Equivalence of nfas, Theory of Computation

Assignment Help:

It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ  v) directly computes another (p, v) via a path that includes some number of ε-transitions (before the σ-transition, after it or both), we can get the same effect by extending the transition relation to include a σ-transition directly from q to v. So, in the example we could add ‘a' edges from 0 to 1 (accounting for the path 0 2072_Equivalence of NFAs.png 3) and from 1 to 3 (accounting for the path 1 27_Equivalence of NFAs1.png 3) and ‘b' edges from 1 to 3 (accounting for the path 1 1649_Equivalence of NFAs2.png  3), from 3 to 2 (accounting for the path 3 1088_Equivalence of NFAs3.png2), and from 1 to 2 (accounting for the  path 1 2144_Equivalence of NFAs4.png2), Note that in each of these cases this corresponds to extending δ(q, σ) to include all states in ˆ δ(q, σ). The remaining effect of the ε-transition from 0 to 2 is the fact that the automaton accepts ‘ε'. This can be obtained, of course, by simply adding 0 to F. Formalizing this  we get a lemma.


Related Discussions:- Equivalence of nfas

Assignment, Consider a water bottle vending machine as a finite–state autom...

Consider a water bottle vending machine as a finite–state automaton. This machine is designed to accept coins of Rs. 2 and 5 only. It dispenses a single water bottle as soon as the

Moore machine, Construct a Moore machine to convert a binary string of radi...

Construct a Moore machine to convert a binary string of radix 4.

Finite state automata, Since the signi?cance of the states represented by t...

Since the signi?cance of the states represented by the nodes of these transition graphs is arbitrary, we will allow ourselves to use any ?nite set (such as {A,B,C,D,E, F,G,H} or ev

Complement - operations on languages, The fact that SL 2 is closed under i...

The fact that SL 2 is closed under intersection but not under union implies that it is not closed under complement since, by DeMorgan's Theorem L 1 ∩ L 2 = We know that

Class of recognizable languages, Proof (sketch): Suppose L 1 and L 2 are ...

Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd