Equivalence of nfas, Theory of Computation

Assignment Help:

It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ  v) directly computes another (p, v) via a path that includes some number of ε-transitions (before the σ-transition, after it or both), we can get the same effect by extending the transition relation to include a σ-transition directly from q to v. So, in the example we could add ‘a' edges from 0 to 1 (accounting for the path 0 2072_Equivalence of NFAs.png 3) and from 1 to 3 (accounting for the path 1 27_Equivalence of NFAs1.png 3) and ‘b' edges from 1 to 3 (accounting for the path 1 1649_Equivalence of NFAs2.png  3), from 3 to 2 (accounting for the path 3 1088_Equivalence of NFAs3.png2), and from 1 to 2 (accounting for the  path 1 2144_Equivalence of NFAs4.png2), Note that in each of these cases this corresponds to extending δ(q, σ) to include all states in ˆ δ(q, σ). The remaining effect of the ε-transition from 0 to 2 is the fact that the automaton accepts ‘ε'. This can be obtained, of course, by simply adding 0 to F. Formalizing this  we get a lemma.


Related Discussions:- Equivalence of nfas

Class of recognizable languages, Proof (sketch): Suppose L 1 and L 2 are ...

Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(

Tuning machine, design a tuning machine for penidrome

design a tuning machine for penidrome

Gdtr, What is the purpose of GDTR?

What is the purpose of GDTR?

DFA, designing DFA

designing DFA

Kleene Closure, 1. Does above all''s properties can be used to prove a lang...

1. Does above all''s properties can be used to prove a language regular? 2..which of the properties can be used to prove a language regular and which of these not? 3..Identify one

Applying the pumping lemma, Applying the pumping lemma is not fundamentally...

Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complica

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd