Equivalence class and equivalence relation, Mathematics

Assignment Help:

1. For a function f : Z → Z, let R be the relation on Z given by xRy iff f(x) = f(y).

(a) Prove that R is an equivalence relation on Z.

(b) If for every x ? Z, the equivalence class of x, [x], contains exactly one element, what can be said about the function f?


Related Discussions:- Equivalence class and equivalence relation

A single student is selected at random, The scores of students taking the A...

The scores of students taking the ACT college entrance examination are normally distributed with a mean µ = 20.1 and a standard deviation σ = 5.8. a)    A single student is sele

By the last gymnastics competition estimate keri total score, In her last g...

In her last gymnastics competition Keri scored a 5.6 on the floor exercise, 5.85 on the vault, and 5.90 on the balance beam. What was Keri's total score? Keri's three scores re

Properties of definite integral, Properties 1.  ∫ b a f ( x ) dx = -∫ ...

Properties 1.  ∫ b a f ( x ) dx = -∫ b a f ( x ) dx .  We can interchange the limits on any definite integral, all that we have to do is tack a minus sign onto the integral

Pair of linear equations in two variables, PAIR OF LINEAR EQUATIONS IN TWO ...

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES: Like  the  crest  of a  peacock so  is  mathematics  at the  head of all knowledge. Example At a certain time in a deer park, t

Write radicals in exponent form, Write each of the given radicals in expone...

Write each of the given radicals in exponent form. Solution As illustrated in the last two parts of this example we have to be careful with parenthesis.  While we

Quadratic equation, how to solve this? y = 7x - 12 y = x2 Solve the sy...

how to solve this? y = 7x - 12 y = x2 Solve the system using substitution.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd