Equations of planes - three dimensional spaces, Mathematics

Assignment Help:

Equations of Planes

Earlier we saw a couple of equations of planes.  Though, none of those equations had three variables in them and were actually extensions of graphs which we could look at in two dimensions. We would like a much more general equation for planes.

Thus, let us start by assuming that we know a point that is on the plane, P0 = (x0, y0, z0).  Let's as well suppose that we have a vector that is orthogonal (perpendicular) to the plane, n = (a, b, c). This vector is known as the normal vector.  Now, suppose that P = (x, y, z) is any point in the plane. At last, as we are going to be working with vectors initially we'll let r0 and r be the position vectors for P0 and P correspondingly.

Here is a diagram of all these vectors.

764_Equations of Planes - Three dimensional spaces 1.png

Note that we added in the vector r - r0 that will lie completely in the plane.  As well notice that we put the normal vector on the plane, but in fact there is no reason to expect this to be the case. We put it here to demonstrate the point.  It is totally possible that the normal vector does not touch the plane in any way.

Here now, as n is orthogonal to the plane, it's as well orthogonal to any vector that lies in the plane.  Particularly it's orthogonal to r -r0.  Remind from the Dot Product section which two orthogonal vectors will comprise a dot product of zero.  Alternatively,

n.(r -r0) = 0          =>n.r =n.r0

This is known as the vector equation of the plane.


Related Discussions:- Equations of planes - three dimensional spaces

Iit-jee questions, can u tell me a website for iit-jee questions?

can u tell me a website for iit-jee questions?

GEOMETRIC PROGRESSION, THE FIRST AND THIRD TERM OF A G.P ARE 8 AND 18 RESPE...

THE FIRST AND THIRD TERM OF A G.P ARE 8 AND 18 RESPECTIVELY AND THE COMMON RATIO IS POSITIVE.FIND THE COMMON RATIO

Quantitative method, Year 1 2 3 4 ...

Year 1 2 3 4 5 6 7 8 9 10 Corn revenue 40 44 46

Triangles, ABC is a triangle right angled at c. let BC=a, CA=b, AB=c and lr...

ABC is a triangle right angled at c. let BC=a, CA=b, AB=c and lrt p be the length of the perpendicular from C on AB. prove that cp=ab and 1/p2=1/a2+1/b2

Example of quadratic polynomial, Factor following.                    x ...

Factor following.                    x 2 - 20 x + 100 Solution In this case we've got three terms & it's a quadratic polynomial.  Notice down as well that the constant

Algebra2;, log6 X + log6 (x-5) = 1

log6 X + log6 (x-5) = 1

How much is invested at 8% if the total amount of interest, Kevin invested ...

Kevin invested $4,000 in an account which earns 6% interest per year and $x in a different account that earns 8% interest per year. How much is invested at 8% if the total amount o

Determine the line parallel or perpendicular, Determine if the line that pa...

Determine if the line that passes through the points ( -2, -10) and (6, -1) is parallel, perpendicular or neither to the line specified  by 7 y - 9 x = 15 . Solution Togive

Higher-order derivatives, Higher-Order Derivatives It can be se...

Higher-Order Derivatives It can be seen that the derivative of a function is also a function. Considering f'x as a function of x, we can take the derivative

Mathematics- in our lives , MATHEMATICS - IN OUR LIVES : What is the mo...

MATHEMATICS - IN OUR LIVES : What is the most obvious example of mathematics in your life? To many of us it is the maths that we studied in school. But is that all the mathemat

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd