Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
There is one final topic that we need to address as far as solution sets go before leaving this section. Consider the following equation and inequality.
x2 + 1 = 0
x2 = 0
If we limit ourselves to just real solutions (that we won't always do) then there is no solution to the equation. Squaring x makes x greater than equal to zero, after that adding 1 onto i.e that the left side is guaranteed to be at least 1. In other terms, there is no real solution to this equation. For the similar basic reason there is no solution to the inequality. Squaring any real x makes it positive or zero and thus will never be negative.
We required a way to mention the fact that there are no solutions here. In solution set notation we say that the solution set is empty & denote it with the symbol : ∅ . This symbol is frequently called the empty set.
In the discussion of empty sets we supposed that were only looking for real solutions. Whereas i.e. what we will be doing for inequalities, we won't be limiting ourselves to real solutions with equations. Once we get around to solving out quadratic equations (x2 + 1 = 0) we will let solutions to be complex numbers & in the case looked at above there are complex solutions to x2 + 1 = 0 . If you don't know how to search these at this point i.e. fine we will be covering that material in some sections. At this point simply accept that x2 + 1 = 0 does have complex solutions.
Lastly, as noted above we won't be utilizing the solution set notation much in this course. This is a nice notation & does have some use on occasion especially for complicated solutions. Though, for the vast majority of the equations & inequalities which we will be looking at will have simple sufficient solution sets that it's just easier to write the solutions and let it go at that. Thus, that is what we will not be using the notation for our solution sets. Though, you have to be aware of the notation & know what it means.
my daughter in kg now how can i train her to develop skills in undertanding the basics of all subjects how can i start teaching other than schol
1. (‡) Prove asymptotic bounds for the following recursion relations. Tighter bounds will receive more marks. You may use the Master Theorem if it applies. 1. C(n) = 3C(n/2) + n
Calculate the Probability A bag contains 80 balls of such 20 are red, 25 are blue and 35 are white. A ball is picked at random what is the probability that the ball picked is
Equal-sharing - situations in which we need to find out how much each portion Multiplication and Division contains when a given quantity is shared out into a number of equal porti
how to divide fractions
GIVE EXAMPLE OF ROW EQUIVALENT
Mr. Hoper is in charge of investments for the golden horizon company. He estimates from past price fluctuations in the gold market that the probabilities of price changes on a give
How to solve Two-Step Equations? Two-step equations involve two math operations - one operation is addition or subtraction. The second operation is multiplication or division.
Equal groupings - when we want to find how many objects there are in several equal-sized sets. (e.g., if there are 3 baskets, each with 4 bananas, 4 oranges and 4 apples, respec
The locus of the midpoint of the chords of an ellipse which are drawn through an end of minor axis is called
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd