Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
There is one final topic that we need to address as far as solution sets go before leaving this section. Consider the following equation and inequality.
x2 + 1 = 0
x2 = 0
If we limit ourselves to just real solutions (that we won't always do) then there is no solution to the equation. Squaring x makes x greater than equal to zero, after that adding 1 onto i.e that the left side is guaranteed to be at least 1. In other terms, there is no real solution to this equation. For the similar basic reason there is no solution to the inequality. Squaring any real x makes it positive or zero and thus will never be negative.
We required a way to mention the fact that there are no solutions here. In solution set notation we say that the solution set is empty & denote it with the symbol : ∅ . This symbol is frequently called the empty set.
In the discussion of empty sets we supposed that were only looking for real solutions. Whereas i.e. what we will be doing for inequalities, we won't be limiting ourselves to real solutions with equations. Once we get around to solving out quadratic equations (x2 + 1 = 0) we will let solutions to be complex numbers & in the case looked at above there are complex solutions to x2 + 1 = 0 . If you don't know how to search these at this point i.e. fine we will be covering that material in some sections. At this point simply accept that x2 + 1 = 0 does have complex solutions.
Lastly, as noted above we won't be utilizing the solution set notation much in this course. This is a nice notation & does have some use on occasion especially for complicated solutions. Though, for the vast majority of the equations & inequalities which we will be looking at will have simple sufficient solution sets that it's just easier to write the solutions and let it go at that. Thus, that is what we will not be using the notation for our solution sets. Though, you have to be aware of the notation & know what it means.
what is 0.875 of 2282?
How can I solve the in-equations? Assist me.
Jody's English quiz scores are 56, 93, 72, 89, and 87. What is the median of her scores? To find out the median, first put the numbers in sequence from least to greatest. 56, 7
The height of a rectangle is 20 cm. The diagonal is 8 cm more than the length. Determine the length of the rectangle. a. 20 b. 23 c. 22 d. 21 d. To determine the len
show that the circle described on any focal chord of the parabola touches the directrix
prove that the composition of two simple harmonic of the same period and in the same straight line is also a simple harmonic motion of the same period.
Evaluate the following integral. ∫ (x+2 / 3√(x-3)) (dx) Solution Occasionally while faced with an integral that consists of a root we can make use of the following subs
We want to find the integral of a function at an arbitrary location x from the origin. Thus, where I(x=0) is the value of the integral for all times less than 0. (Essenti
CM and RN are resp. the medians of triangle ABC and Triangle PQR.if triangle ABC similar to Triangle PQR TRIANGLE AMC SIMILAR TO PNR
How tall does a cone with diameter of 10 inches have to be to fit exactly half of a sphere with a diameter of 10 inches inside it?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd