Empty set, Mathematics

Assignment Help:

There is one final topic that we need to address as far as solution sets go before leaving this section. Consider the following equation and inequality.

                                   x2 + 1 = 0

                                     x2  = 0

If we limit ourselves to just real solutions (that we won't always do) then there is no solution to the equation.  Squaring x makes x greater than equal to zero, after that adding 1 onto i.e that the left side is guaranteed to be at least 1. In other terms, there is no real solution to this equation.  For the similar basic reason there is no solution to the inequality.  Squaring any real x makes it positive or zero and thus will never be negative.

We required a way to mention the fact that there are no solutions here.  In solution set notation we say that the solution set is empty & denote it with the symbol : ∅ .  This symbol is frequently called the empty set.

In the discussion of empty sets we supposed that were only looking for real solutions. Whereas i.e. what we will be doing for inequalities, we won't be limiting ourselves to real solutions with equations. Once we get around to solving out quadratic equations (x2 + 1 = 0) we will let solutions to be complex numbers & in the case looked at above there are complex solutions to x2 + 1 = 0 .  If you don't know how to search these at this point i.e. fine we will be covering that material in some sections. At this point simply accept that x2 + 1 = 0 does have complex solutions.

Lastly, as noted above we won't be utilizing the solution set notation much in this course. This is a nice notation & does have some use on occasion especially for complicated solutions. Though, for the vast majority of the equations & inequalities which we will be looking at will have simple sufficient solution sets that it's just easier to write the solutions and let it go at that. Thus, that is what we will not be using the notation for our solution sets.  Though, you have to be aware of the notation & know what it means.


Related Discussions:- Empty set

Prove that r is an equivalence relation, 1. Let S be the set of all nonzero...

1. Let S be the set of all nonzero real numbers. That is, S = R - {0}. Consider the relation R on S given by xRy iff xy > 0. (a) Prove that R is an equivalence relation on S, an

Iti, Gm signal is better than am signal becuase

Gm signal is better than am signal becuase

Trignometric function, If tanx+secx=sqr rt 3, 0 Ans) sec 2 x=(√3-tanx) 2...

If tanx+secx=sqr rt 3, 0 Ans) sec 2 x=(√3-tanx) 2 1+tan 2 x=3+tan 2 x-2√3tanx 2√3tanx=2 tanx=1/√3 x=30degree

What is factorial, Q. What is Factorial? A factorial is a number with a...

Q. What is Factorial? A factorial is a number with a factorial sign, !, after it. 5! is read "five factorial." 3! is read "three factorial." The factorial of a natural

???, a deposit of 10,000 was made to an account the year you were born afte...

a deposit of 10,000 was made to an account the year you were born after 12 years the account is worth 16,600 what is the simple interest rate did the account earn?

Determine rational exponents, Evaluate following. (a) 625 3/4 Solut...

Evaluate following. (a) 625 3/4 Solution  (a) 625 3/4 Again, let's employ both forms to calculate this one.             625 3/4   =( 625 1/4 ) 3 =(5) 3   = 12

Venn diagram - set theory and calculus, Venn Diagram - Set theory and calcu...

Venn Diagram - Set theory and calculus A easy way of representing sets and relations among sets is by means of the Venn diagram. Venn diagram includes of a rectangle that pres

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd