Empty set, Mathematics

Assignment Help:

There is one final topic that we need to address as far as solution sets go before leaving this section. Consider the following equation and inequality.

                                   x2 + 1 = 0

                                     x2  = 0

If we limit ourselves to just real solutions (that we won't always do) then there is no solution to the equation.  Squaring x makes x greater than equal to zero, after that adding 1 onto i.e that the left side is guaranteed to be at least 1. In other terms, there is no real solution to this equation.  For the similar basic reason there is no solution to the inequality.  Squaring any real x makes it positive or zero and thus will never be negative.

We required a way to mention the fact that there are no solutions here.  In solution set notation we say that the solution set is empty & denote it with the symbol : ∅ .  This symbol is frequently called the empty set.

In the discussion of empty sets we supposed that were only looking for real solutions. Whereas i.e. what we will be doing for inequalities, we won't be limiting ourselves to real solutions with equations. Once we get around to solving out quadratic equations (x2 + 1 = 0) we will let solutions to be complex numbers & in the case looked at above there are complex solutions to x2 + 1 = 0 .  If you don't know how to search these at this point i.e. fine we will be covering that material in some sections. At this point simply accept that x2 + 1 = 0 does have complex solutions.

Lastly, as noted above we won't be utilizing the solution set notation much in this course. This is a nice notation & does have some use on occasion especially for complicated solutions. Though, for the vast majority of the equations & inequalities which we will be looking at will have simple sufficient solution sets that it's just easier to write the solutions and let it go at that. Thus, that is what we will not be using the notation for our solution sets.  Though, you have to be aware of the notation & know what it means.


Related Discussions:- Empty set

How to make equations of conics easier to read, How to Make Equations of Co...

How to Make Equations of Conics Easier to Read ? If you want to graph a conic sections, first you need to make the equation easy to read. For example, say you have the equatio

Greens function, construct the green''s function that satisfies dG''''-(2x+...

construct the green''s function that satisfies dG''''-(2x+1)G''+(x+1)G=delta(x-s), G(0,s)=G(1,s)=0

Pert, define algorithm of pert and pert with suitable examples

define algorithm of pert and pert with suitable examples

Example of convergent or divergent - comparison test, Determine if the subs...

Determine if the subsequent series is convergent or divergent. Solution As the cosine term in the denominator doesn't get too large we can suppose that the series term

Changing the base of the index, Changing The Base Of The Index For com...

Changing The Base Of The Index For comparison reasons if two series have different base years, this is difficult to compare them directly. In such cases, it is essential to ch

Divison, what is 24 diveded by 3

what is 24 diveded by 3

Example of addition, Example 1 Add 4x 4 + 3x 3 - ...

Example 1 Add 4x 4 + 3x 3 - x 2 + x + 6 and -7x 4 - 3x 3 + 8x 2 + 8x - 4 We write them one below the other as shown below.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd