Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
There is one final topic that we need to address as far as solution sets go before leaving this section. Consider the following equation and inequality.
x2 + 1 = 0
x2 = 0
If we limit ourselves to just real solutions (that we won't always do) then there is no solution to the equation. Squaring x makes x greater than equal to zero, after that adding 1 onto i.e that the left side is guaranteed to be at least 1. In other terms, there is no real solution to this equation. For the similar basic reason there is no solution to the inequality. Squaring any real x makes it positive or zero and thus will never be negative.
We required a way to mention the fact that there are no solutions here. In solution set notation we say that the solution set is empty & denote it with the symbol : ∅ . This symbol is frequently called the empty set.
In the discussion of empty sets we supposed that were only looking for real solutions. Whereas i.e. what we will be doing for inequalities, we won't be limiting ourselves to real solutions with equations. Once we get around to solving out quadratic equations (x2 + 1 = 0) we will let solutions to be complex numbers & in the case looked at above there are complex solutions to x2 + 1 = 0 . If you don't know how to search these at this point i.e. fine we will be covering that material in some sections. At this point simply accept that x2 + 1 = 0 does have complex solutions.
Lastly, as noted above we won't be utilizing the solution set notation much in this course. This is a nice notation & does have some use on occasion especially for complicated solutions. Though, for the vast majority of the equations & inequalities which we will be looking at will have simple sufficient solution sets that it's just easier to write the solutions and let it go at that. Thus, that is what we will not be using the notation for our solution sets. Though, you have to be aware of the notation & know what it means.
The first definition which we must cover is that of differential equation. A differential equation is any equation that comprises derivatives, either partial derivatives or ordinar
there are 2,500 chips in a bag you slit them up into 20 groups how many chips are in a group
Find out the surface area of the solid acquired by rotating the following parametric curve about the x-axis. x = cos 3 θ y = sin 3 θ 0 ≤ θ ≤ ?/2 Solution We wil
1.) How does the monsoon influence the climate and vegetation of Southeast Asia? 2.) What is the main crop in Southeast Asia and the main systems by which it is produce? How and
Properties Now there are a couple of formulas for summation notation. 1. here c is any number. Therefore, we can factor constants out of a summation. 2. T
writ the equation that describes the motion of a point on the wheel that has a center of 4m off the ground, has radius of 15 cm, makes a full rotation every 10 seconds and starts a
rajan bought an armchair for rs.2200 and sold it for rs.2420.find his profit per cent.
7a^2+12a-11=0
What is Exponents values? Exponents were invented as a quick way to show that you are multiplying a number by itself several times. It's too much trouble to write something
1+1=
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd