Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
There is one final topic that we need to address as far as solution sets go before leaving this section. Consider the following equation and inequality.
x2 + 1 = 0
x2 = 0
If we limit ourselves to just real solutions (that we won't always do) then there is no solution to the equation. Squaring x makes x greater than equal to zero, after that adding 1 onto i.e that the left side is guaranteed to be at least 1. In other terms, there is no real solution to this equation. For the similar basic reason there is no solution to the inequality. Squaring any real x makes it positive or zero and thus will never be negative.
We required a way to mention the fact that there are no solutions here. In solution set notation we say that the solution set is empty & denote it with the symbol : ∅ . This symbol is frequently called the empty set.
In the discussion of empty sets we supposed that were only looking for real solutions. Whereas i.e. what we will be doing for inequalities, we won't be limiting ourselves to real solutions with equations. Once we get around to solving out quadratic equations (x2 + 1 = 0) we will let solutions to be complex numbers & in the case looked at above there are complex solutions to x2 + 1 = 0 . If you don't know how to search these at this point i.e. fine we will be covering that material in some sections. At this point simply accept that x2 + 1 = 0 does have complex solutions.
Lastly, as noted above we won't be utilizing the solution set notation much in this course. This is a nice notation & does have some use on occasion especially for complicated solutions. Though, for the vast majority of the equations & inequalities which we will be looking at will have simple sufficient solution sets that it's just easier to write the solutions and let it go at that. Thus, that is what we will not be using the notation for our solution sets. Though, you have to be aware of the notation & know what it means.
us consider the following mass-spring-damper system: md2xdt2+cdxdt+kx=0 with m=5 kg as the mass of the body, k=1.6N/m as the spring constant and two different values of c.
What is Angles? An angle is made up of two rays with a common endpoint, which is called the vertex. The sides of the angle are rays. An angle is denoted by "θ". When two li
how do you turn 91 divided by730 into a compatible number
Given A and B A = | 1 0 1 | B = | 1 1 0 | | 1 1 0 | | 0 1 1 | | 0
Define Euler Circuit and Euler Path. Which of the following graphs have an Euler circuit and Euler path.
advantages and disadvantages of laspeyres and paasche
A train goin from delhi to jaipur stops at 7 intermediate stations. 5 persons enter the train during the journey with 5 difefrent tickets of same class . How mant different set of
angel 1 and angel 2 are what angels?
Evaluate following limits. Solution In this case we also contain a 0/0 indeterminate form and if we were actually good at factoring we could factor the numerator & den
Rectilinear Distance (Total Travel Distance per Day Using Rectilinear Distance): It can be computed through using following formula: d(X, Pi) = |x - ai| + |y - bi| (Source: T
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd