Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅).
Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable.
Proof: We'll sketch three different algorithms for deciding the Emptiness Problem, given some DFA A = (Q,Σ, T, q0, F).
(Emptiness 1) A string w is in L(A) iff it labels a path through the transition graph of A from q0 to an accepting state. Thus, the language will be non-empty iff there is some such path. So the question of Emptiness reduces to the question of connectivity: the language recognized by A is empty iff there is no accepting state in the connected component of its transition graph that is rooted at q0. The problem of determining connected components of directed graphs is algorithmically solvable,by Depth-First Search, for instance (and solvable in time linear in the number of nodes). So, given A, we just do a depth-?rst search of the transition graph rooted at the start state keeping track of whether we encounter any accepting state. We return "True" iff we ?nd none.
how to understand DFA ?
Since the signi?cance of the states represented by the nodes of these transition graphs is arbitrary, we will allow ourselves to use any ?nite set (such as {A,B,C,D,E, F,G,H} or ev
Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about
What are the issues in computer design?
i want to do projects for theory of computation subject what topics should be best.
Intuitively, closure of SL 2 under intersection is reasonably easy to see, particularly if one considers the Myhill graphs of the automata. Any path through both graphs will be a
how to convert a grammar into GNF
matlab v matlab
short application for MISD
Let G be a graph with n > 2 vertices with (n2 - 3n + 4)/2 edges. Prove that G is connected.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd