Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅).
Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable.
Proof: We'll sketch three different algorithms for deciding the Emptiness Problem, given some DFA A = (Q,Σ, T, q0, F).
(Emptiness 1) A string w is in L(A) iff it labels a path through the transition graph of A from q0 to an accepting state. Thus, the language will be non-empty iff there is some such path. So the question of Emptiness reduces to the question of connectivity: the language recognized by A is empty iff there is no accepting state in the connected component of its transition graph that is rooted at q0. The problem of determining connected components of directed graphs is algorithmically solvable,by Depth-First Search, for instance (and solvable in time linear in the number of nodes). So, given A, we just do a depth-?rst search of the transition graph rooted at the start state keeping track of whether we encounter any accepting state. We return "True" iff we ?nd none.
how to prove he extended transition function is derived from part 2 and 3
De?nition Instantaneous Description of an FSA: An instantaneous description (ID) of a FSA A = (Q,Σ, T, q 0 , F) is a pair (q,w) ∈ Q×Σ* , where q the current state and w is the p
We have now de?ned classes of k-local languages for all k ≥ 2. Together, these classes form the Strictly Local Languages in general. De?nition (Strictly Local Languages) A langu
How useful is production function in production planning?
how to find whether the language is cfl or not?
how to convert a grammar into GNF
Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complica
i have some questions in automata, can you please help me in solving in these questions?
Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to
draw pda for l={an,bm,an/m,n>=0} n is in superscript
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd