Emptiness problem, Theory of Computation

Assignment Help:

The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅).

Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable.

Proof: We'll sketch three different algorithms for deciding the Emptiness Problem, given some DFA A = (Q,Σ, T, q0, F).

(Emptiness 1) A string w is in L(A) iff it labels a path through the transition graph of A from q0 to an accepting state. Thus, the language will be non-empty iff there is some such path. So the question of Emptiness reduces to the question of connectivity: the language recognized by A is empty iff there is no accepting state in the connected component of its transition graph that is rooted at q0. The problem of determining connected components of directed graphs is algorithmically solvable,by Depth-First Search, for instance (and solvable in time linear in the number of nodes). So, given A, we just do a depth-?rst search of the transition graph rooted at the start state keeping track of whether we encounter any accepting state. We return "True" iff we ?nd none.


Related Discussions:- Emptiness problem

Equivalence of nfas and dfas, In general non-determinism, by introducing a ...

In general non-determinism, by introducing a degree of parallelism, may increase the accepting power of a model of computation. But if we subject NFAs to the same sort of analysis

Equivalence problem, The Equivalence Problem is the question of whether two...

The Equivalence Problem is the question of whether two languages are equal (in the sense of being the same set of strings). An instance is a pair of ?nite speci?cations of regular

Myhill-nerode, Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff...

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn

Myhill-nerode theorem, The Myhill-Nerode Theorem provided us with an algori...

The Myhill-Nerode Theorem provided us with an algorithm for minimizing DFAs. Moreover, the DFA the algorithm produces is unique up to isomorphism: every minimal DFA that recognizes

Strictly local languages, We have now de?ned classes of k-local languages f...

We have now de?ned classes of k-local languages for all k ≥ 2. Together, these classes form the Strictly Local Languages in general. De?nition (Strictly Local Languages) A langu

Find regular grammar : a(a+b)*(ab*+ba*)b, Find the Regular Grammar for the ...

Find the Regular Grammar for the following Regular Expression:                    a(a+b)*(ab*+ba*)b.

Turing machine , Let ? ={0,1} design a Turing machine that accepts L={0^m ...

Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .

Convert chomsky normal form into binary form, Suppose G = (N, Σ, P, S) is a...

Suppose G = (N, Σ, P, S) is a reduced grammar (we can certainly reduce G if we haven't already). Our algorithm is as follows: 1. Define maxrhs(G) to be the maximum length of the

Chomsky normal form, s->0A0|1B1|BB A->C B->S|A C->S|null find useless symbo...

s->0A0|1B1|BB A->C B->S|A C->S|null find useless symbol?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd