Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. emf produced by windings?
The time variation of emf for a single conductor corresponds to the spatial variation of air-gap flux density. By suitable winding design, the harmonics can be reduced appreciably, and the waveform of the generated emf can be made to approach a pure sine shape.
Figure shows an elementary single-phase, two-pole synchronous machine. In almost all cases, the armature winding of a synchronous machine is on the stator and the field winding is on the rotor, because it is constructionally advantageous to have the low-power field winding on the rotating member. The field winding is excited by direct current, which is supplied by a dc source connected to carbon brushes bearing on slip rings (or collector rings). The armature windings, though distributed in the slots around the inner periphery of the stator in an actual machine, are shown in Figure (a) for simplicity as consisting of a single coil of N turns, indicated in cross section by the two sides a and -a placed in diametrically opposite narrow slots. The conductors forming these coil sides are placed inslots parallel to the machine shaft and connected in series by means of the end connections.
The coil in Figure (a) spans 180° (or a complete pole pitch, which is the peripheral distance from the centerline of a north pole to the centerline of an adjacent south pole) and is hence known as a full-pitch coil. For simplicity and convenience, Figure (a) shows only a two-pole synchronous machine with salient-pole construction; the flux paths are shown by dashed lines. Figure (b) illustrates a nonsalient-pole or cylindrical-rotor construction. The stator winding details are not shown and the flux paths are indicated by dashed lines.
The magnetic field can be supplied by coils supplied from the output of the generator itself. This is known as self-excitation.There are three ways that the field coils can be conn
Q. In a differentiating circuit, R=10 kW,and C=2.2μF.If the input voltage goes from 0V to 10 V at a constant rate in 0.4s, determine the output voltage. Solution: e 0 =
A 1000-hp, 2300-V, wye-connected, three-phase, 60-Hz, 20-pole synchronous motor, for which cylindrical-rotor theory can be used and all losses can be neglected, has a synchronous r
Operation - unijunction transistor: Operation : Imagine that the emitter supply voltage is turned biased and a small emitter reverse current flows. Then the intrinsic stand
Series-Parallel Magnetic Circuit: Figure shows an electromagnet made of cast steel contain a coil of 500 turns wound on the central limb. The cross-sectional area of the outer
Q. A dc series motor operates at 750 r/min with a line current of 100 A from the 250-V mains. Its armature-circuit resistance is 0.15 and its series-field resistance is 0.1 . As
Need answers of a question bank of power electronics . It is an assignment. Urgent
Ask quobject oriented programming by robert lafore 4th edition solutionestion #Minimum 100 words accepted#
Q. Illustrate the principle of alignment? Pieces of highly permeablematerial, such as iron, situated in ambientmediumof lowpermeability, such as air, in which a magnetic field
The arm of a hydraulic robot is controlled as shown in the block diagram below: The arm dynamics are represented by: Dynamic specification for the arm requires:
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd