Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Electromechanical Meters
Electromechanical energy meters are based on the Ferraris Principle (see note in the margin). The working of these meters is explained.
Working of Electromechanical Meters
The meters have a revolving metallic disc mounted on jewel bearings or magnetic suspension bearings. The display is cyclometer or mechanical counters and accuracy is classically 1% or 2% (class 1.0 or 2.0). They cater to limited tariffs applicable majorly to 1-phase or 3- phase direct connected segment (whole current meters).The electromechanical induction meter operates through counting the revolutions of the disc that rotates at a speed proportional to the power consumed.
The number of revolutions is, therefore, proportional to the energy usage. The metallic disc is acted upon through three magnetic fields, one proportional to the voltage, the other to the current and a third constant field supplied by a permanent magnet. One of the varying fields induces currents in the metallic disc, that are then acted upon through the other varying field to produce a torque.
This results in the torque being proportional to the product of the current and voltage, that is power. As the metallic disc rotates through the permanent magnetic field, eddy currents are again produced that dissipate energy (because the disc has some resistance) and act to slow the rotation. This drag is proportional to the rotation speed. The equilibrium among the applied torque and the drag results within a speed proportional to the power. The rotating disc in this category of meter is, actually, an electric motor of a category known as a reluctance motor or eddy current motor. It consumes a little amount of power, classically around 2 W.
1555_Use delta-wye transformation for network reduction.png what is the solution to this particular problem?
Q. For DSB and conventional AM, obtain expressions for the in-phase and quadrature components x d (t) and x q (t), and envelope and phase v(t) and φ(t).
Q. The inductance per unit length in H/mfor parallel plate in?nitely long conductors in air is given by L = µ 0 d/w = 4π×10 -7 d/w, where d and w are inmeters.Compute L (per unit
Explain the Discrete Time Systems? A system operates on an input signal, x[n] and output the results, y[n]. For example, a digital filter (a system) can be represented by the f
what are the limitations of superposition theroem
A communication system for a voice-band (3 kHz) channel is designed for a received SNR E b /N 0 at the detector of 30 dB when the transmitter power is Ps =-3 dBW. Find the value o
A battery having of 5 cells with emf and internal resistance of every cell is 1.5V and 0.25Ω connected in series. If the current flow by load resistance is 1.5A, calculate the valu
Asset information management system: GIS has the potential to revolutionize the reform procedure in areas such as consumer indexing, asset and work management, distribution ne
Q. Explain working of Presentation Layer? This is concerned with format of the data represented, in order to overcome difference in representation of information as supplied to
Mechanical Structure of Depletion Type MOSFET The mechanical structure of this type of device is displayed in figure. In an IC, we would locate two n-type regions side by side
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd