Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Electromechanical Meters
Electromechanical energy meters are based on the Ferraris Principle (see note in the margin). The working of these meters is explained.
Working of Electromechanical Meters
The meters have a revolving metallic disc mounted on jewel bearings or magnetic suspension bearings. The display is cyclometer or mechanical counters and accuracy is classically 1% or 2% (class 1.0 or 2.0). They cater to limited tariffs applicable majorly to 1-phase or 3- phase direct connected segment (whole current meters).The electromechanical induction meter operates through counting the revolutions of the disc that rotates at a speed proportional to the power consumed.
The number of revolutions is, therefore, proportional to the energy usage. The metallic disc is acted upon through three magnetic fields, one proportional to the voltage, the other to the current and a third constant field supplied by a permanent magnet. One of the varying fields induces currents in the metallic disc, that are then acted upon through the other varying field to produce a torque.
This results in the torque being proportional to the product of the current and voltage, that is power. As the metallic disc rotates through the permanent magnetic field, eddy currents are again produced that dissipate energy (because the disc has some resistance) and act to slow the rotation. This drag is proportional to the rotation speed. The equilibrium among the applied torque and the drag results within a speed proportional to the power. The rotating disc in this category of meter is, actually, an electric motor of a category known as a reluctance motor or eddy current motor. It consumes a little amount of power, classically around 2 W.
Q. Explain the working of Rectifier Circuits? A simple half-wave rectifier using an ideal diode is shown in Figure(a). The sinusoidal source voltage v S is shown in Figure (b)
Consider and obtain the values for R S , R 2 , R 1 , and R D . Apply the rule-of-thumb dc design procedure outlined in this section for a JFET with V P = 3V, I DSS = 20 mA, and a
The Three-phase alternator In this case, three separate sets of coils are wound on the stator and connected to produce three separate outputs. Because of the physical displace
Calculate the Small Signal Voltage Gain a) Calculate the small signal voltage gain a v = v o /v i , input resistance R i , and output resistance Ro for the circuit below. A
Q. Purpose of Customer Review in project management? The Customer in conjunction with the Project Manager/ Engineer decides the timing of the IFA review. This review is cond
few
Q. The power gain of an antenna is 10,000. If its input power is 1 kW, calculate the maximum radiation intensity that it can generate.
Explain the electrical contact materials with examples. Electrical contact materials: A number of elements in their pure form as copper, nickel, palladium, molybdenum, platin
Q. Consider a 240-V supply feeding a resistive load of 10 kW through wires having a total resistance of R = 0.02 . For the same load, let a 120-V supply be used with a total wire
Question: a) Describe two mechanisms by which electrons can be excited from the valence band to the conduction band? b) Given that the direct-band gap energy for Gallium N
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd