Eigenvalues and eigenvectors, Mathematics

Assignment Help:

Review: Systems of Equations - The traditional initial point for a linear algebra class. We will utilize linear algebra techniques to solve a system of equations.

Review: Matrices and Vectors - A brief introduction to vectors and matrices. We will see arithmetic including matrices and vectors, determinant of a matrix and inverse of a matrix and linearly independent vectors and systems of equations revisited.

Review: Eigenvalues and Eigenvectors- Determining the eigen values and eigen-vectors of a matrix. This matter will be important to solving systems of differential equations.

Systems of Differential Equations - Now we will look at several of the basics of systems of differential equations.

Solutions to Systems - We will see what is included in solving a system of differential equations.

Phase Plane - A brief introduction to the phase portraits and plane.

Real Eigenvalues - Solving systems of differential equations along with real eigen-values.

Complex Eigenvalues - Solving systems of differential equations along with complex eigen-values.

Repeated Eigenvalues- Solving systems of differential equations along with repeated eigen-values

Nonhomogeneous Systems- Solving non-homogeneous systems of differential equations by using undetermined coefficients and variation of parameters

Laplace Transforms - An extremely brief look at how Laplace transforms can be utilized to solve a system of differential equations.

Modeling - Under this section we'll take a rapid look at some extensions of several of the modeling we did in previous section that lead to systems of equations.


Related Discussions:- Eigenvalues and eigenvectors

Mealy and Moore Machine, Distinguish between Mealy and Moore Machine? Const...

Distinguish between Mealy and Moore Machine? Construct a Mealy machine that can output EVEN or ODD According to the total no. of 1''s encountered is even or odd.on..

Determine the projection - vector, Determine the Projection of b = (2, 1, -...

Determine the Projection of b = (2, 1, -1) onto a = (1, 0, -2) There is a requirement of a dot product and the magnitude of a. a →  • b → = 4                             ||a

Euilibrium, What is partial market equilibrium

What is partial market equilibrium

Describe adding and subtracting fractions in details, Describe Adding and S...

Describe Adding and Subtracting Fractions in details? To add or subtract fractions, here are some steps: 1. Find the lowest common denominator (LCD) or any common denominato

Find the quotient and remainder, Question: Find the quotient and remain...

Question: Find the quotient and remainder when f(x) = x 5 - x 4 - 4x 3 + 2x + 3 is divided by g(x) = x-2. Make sure the quotient and remainder are clearly identified.

Find the median, Marks obtained by 70 students are given below: ...

Marks obtained by 70 students are given below: M arks 20 70 50 60 75 90 40 No.

Mrs, Distributive Property _x7=(3x7)+(2x_)

Distributive Property _x7=(3x7)+(2x_)

Domain and range of a relation, Consider R be a relation from A to B, that ...

Consider R be a relation from A to B, that is, take R A Χ B. Then Domain R = {a: a € A, (a, b) € R for any b € B} i.e. domain of R is the set of all the first components of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd