Eigenvalues and eigenvectors, Mathematics

Assignment Help:

Review: Systems of Equations - The traditional initial point for a linear algebra class. We will utilize linear algebra techniques to solve a system of equations.

Review: Matrices and Vectors - A brief introduction to vectors and matrices. We will see arithmetic including matrices and vectors, determinant of a matrix and inverse of a matrix and linearly independent vectors and systems of equations revisited.

Review: Eigenvalues and Eigenvectors- Determining the eigen values and eigen-vectors of a matrix. This matter will be important to solving systems of differential equations.

Systems of Differential Equations - Now we will look at several of the basics of systems of differential equations.

Solutions to Systems - We will see what is included in solving a system of differential equations.

Phase Plane - A brief introduction to the phase portraits and plane.

Real Eigenvalues - Solving systems of differential equations along with real eigen-values.

Complex Eigenvalues - Solving systems of differential equations along with complex eigen-values.

Repeated Eigenvalues- Solving systems of differential equations along with repeated eigen-values

Nonhomogeneous Systems- Solving non-homogeneous systems of differential equations by using undetermined coefficients and variation of parameters

Laplace Transforms - An extremely brief look at how Laplace transforms can be utilized to solve a system of differential equations.

Modeling - Under this section we'll take a rapid look at some extensions of several of the modeling we did in previous section that lead to systems of equations.


Related Discussions:- Eigenvalues and eigenvectors

Limits, evaluate limit as x approaches 0 (x squared times sin (1/x)

evaluate limit as x approaches 0 (x squared times sin (1/x)

Equivalence relation, a) Let V = f1, 2, :::, 7g and define R on V by xRy if...

a) Let V = f1, 2, :::, 7g and define R on V by xRy iff x -  y is a multiple of 3. You should know by now that R is an equivalence relation on V . Suppose that this is so. Explain t

Compute the probability, From past experience a machine is termed to be set...

From past experience a machine is termed to be set up correctly on 90 percent of occasions.  If the machine is set up correctly then 95 percent of good parts are expected however i

Matrices, what is the business application of matrices

what is the business application of matrices

Logic family, what are the characteristic of digital ic

what are the characteristic of digital ic

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd