Ecme algorithm, Advanced Statistics

Assignment Help:

The Expectation/Conditional Maximization Either algorithm which is the generalization of ECM algorithm attained by replacing some of the CM-steps of ECM which maximize the constrained expected complete-data log-likelihood, with steps that maximize correspondingly constrained real likelihood. The algorithm can have substantially faster convergence rate than either the EM algorithm or ECM measured using either the number of iterations or actual computer time. There are two reasons for this enhancement. First, in some of the ECME's maximization steps the actual likelihood is being conditionally maximized, rather than the current approximation to it as with EM and ECM. Second,

ECME permits faster converging numerical techniques to be used on only those constrained maximizations where they are most efficacious.

 


Related Discussions:- Ecme algorithm

Observation-driven model, Observation-driven model  is a term generally a...

Observation-driven model  is a term generally applied to models for the longitudinal data or time series which introduce within the unit correlation by specifying the conditional

Tests for heteroscedasticity, The Null Hypothesis - H0: There is no heteros...

The Null Hypothesis - H0: There is no heteroscedasticity i.e. β 1 = 0 The Alternative Hypothesis - H1:  There is heteroscedasticity i.e. β 1 0 Reject H0 if nR2 > MTB >

Non central distributions, Non central distributions is the series of prob...

Non central distributions is the series of probability distributions each of which is the adaptation of one of the standard sampling distributions like the chi-squared distributio

Dummy variable, Discuss the use of dummy variables in both multiple linear ...

Discuss the use of dummy variables in both multiple linear regression and non-linear regression. Give examples if possible

Classification and regression tree technique (cart), Classification and reg...

Classification and regression tree technique (CART): The alternative to the multiple regression and associated techniques or methods for determining subsets of the explanatory va

Biplots, Biplots: It is the multivariate analogue of the scatter plots, wh...

Biplots: It is the multivariate analogue of the scatter plots, which estimates the multivariate distribution of the sample in a few dimensions, typically two and superimpose on th

Ecme algorithm, The Expectation/Conditional Maximization Either algorithm w...

The Expectation/Conditional Maximization Either algorithm which is the generalization of ECM algorithm attained by replacing some of the CM-steps of ECM which maximize the constrai

Cohort component method, Cohort component method : A broadly used method or...

Cohort component method : A broadly used method or technique of forecasting the age- and sex-speci?c population to the upcoming years, in which the initial population is strati?ed

Dendro gram, A term commonly encountered in the application of the agglomer...

A term commonly encountered in the application of the agglomerative hierarchical clustering techniques, where it refers to the 'tree-like' diagram illustrating the series of steps

Define kappa coefficient, Kappa coefficient : The chance corrected index of...

Kappa coefficient : The chance corrected index of the agreement between, for instance, judgements and diagnoses made by the two raters. Calculated as the ratio of the noticed exces

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd