Dynamic response of control systems, Electrical Engineering

Assignment Help:

Q. Dynamic Response of Control Systems?

The existence of transients (and associated oscillations) is a characteristic of systems that possess energy-storage elements and that are subjected to disturbances. Usually the complete solution of the differential equation providesmaximuminformation about the system's dynamic performance.

Consequently, whenever it is convenient, an attempt is made to establish this solution first. Unfortunately, however, this is not easily accomplished for high-order systems. Hence we are forced to seek out other easier and more direct methods, such as the frequency-response method of analysis.

Much of linear control theory is based on the frequency-response formulation of the system equations, and several quasi-graphical and algebraic techniques have been developed to analyze and design linear control systems based on frequency-response methods. Although frequency-response techniques are limited to relatively simple systems, and apply only to linear systems in the rigorous mathematical sense, they are still most useful in system design and the stability analysis of practical systems and can give a great deal of information about the relationships between system parameters (such as time constants and gains) and system response.

Once the transfer function of Equation is developed in terms of the complex frequency variable s, by letting s = jω, the frequency-response characteristic and the loop gain GH(jω) can be determined. The Bode diagram, displaying the frequency response and root-locus techniques, can be used to study the stability analysis of feedback control systems. The dc steady-state response, which becomes one component of the step response of the control system, can also be determined by allowing s to be zero in the transfer function. The step response, in turn, can be used as a measure of the speed of response of the control system. Thus, the transfer function obtained from the block diagram can be used to describe both the steady-state and the transient response of a feedback control system.


Related Discussions:- Dynamic response of control systems

Different kinds of high-tension fuses and low-tension fuses, Q. Different k...

Q. Different kinds of high-tension fuses and low-tension fuses ? Ans: There are two kinds of fuses they are a) L.V Fuses - 1) HRC cartridge fuses.   - 2) Semi enclosed re

Find magnitude and direction developed torque, Q. The self and mutual induc...

Q. The self and mutual inductances of a machine with two windings are given by L 11 = (1 +sin θ), L 22 = 2(1 + sin θ), and L 12 = L 21 = M = (1-sin θ). Assuming θ = 45°, and le

Fibre optics, 1. A very narrow laser beam in air is shone into a sphere of ...

1. A very narrow laser beam in air is shone into a sphere of solid glass that has a uniform refractive index n>1 and radius ? . The beam makes an angle a in air with the normal to

Gis technology, GIS technology: GIS could be used to derive diverse in...

GIS technology: GIS could be used to derive diverse information for efficient technical and commercial management of a power distribution utility, e.g., capacity analysis, inv

Explain register direct and indirect data addressing mode, Explain Register...

Explain Register Direct and Indirect data addressing mode (with examples) available in microprocessors. Register Direct Modes and Register Indirect Modes: Does not giv

Simulation of a standard ic linear regulator, 1.    Introduction The ob...

1.    Introduction The objective of this assignment is to design and evaluate a stabilised discrete linear power supply. The power supply requires to be designed according to t

Sources of power dissipation in cmos logic, Describe the three main sources...

Describe the three main sources of power dissipation in CMOS logic. Hence calculate the power dissipated in a CMOS ASIC of 40,000 gates operating at a frequency of 133MHz with a s

Evaluate the damping ratio for the gain, A feedback control system with the...

A feedback control system with the configuration of Figure has the following parameters: K p = 0.5 V/rad, K a = 100 V/V, K m = 2.7 × 10 -4 N·m/V, J = 1.5 × 10 -5 kg·m 2 , and

Explain dipolar polarization, Explain dipolar polarization. Dipolar ...

Explain dipolar polarization. Dipolar polarization is a polarization which is particular to polar molecules. Such polarization results from permanent dipoles that retain po

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd