Dynamic response of control systems, Electrical Engineering

Assignment Help:

Q. Dynamic Response of Control Systems?

The existence of transients (and associated oscillations) is a characteristic of systems that possess energy-storage elements and that are subjected to disturbances. Usually the complete solution of the differential equation providesmaximuminformation about the system's dynamic performance.

Consequently, whenever it is convenient, an attempt is made to establish this solution first. Unfortunately, however, this is not easily accomplished for high-order systems. Hence we are forced to seek out other easier and more direct methods, such as the frequency-response method of analysis.

Much of linear control theory is based on the frequency-response formulation of the system equations, and several quasi-graphical and algebraic techniques have been developed to analyze and design linear control systems based on frequency-response methods. Although frequency-response techniques are limited to relatively simple systems, and apply only to linear systems in the rigorous mathematical sense, they are still most useful in system design and the stability analysis of practical systems and can give a great deal of information about the relationships between system parameters (such as time constants and gains) and system response.

Once the transfer function of Equation is developed in terms of the complex frequency variable s, by letting s = jω, the frequency-response characteristic and the loop gain GH(jω) can be determined. The Bode diagram, displaying the frequency response and root-locus techniques, can be used to study the stability analysis of feedback control systems. The dc steady-state response, which becomes one component of the step response of the control system, can also be determined by allowing s to be zero in the transfer function. The step response, in turn, can be used as a measure of the speed of response of the control system. Thus, the transfer function obtained from the block diagram can be used to describe both the steady-state and the transient response of a feedback control system.


Related Discussions:- Dynamic response of control systems

Calculate the voltage gain, Using the BC548B BJT transistor amplifier biasi...

Using the BC548B BJT transistor amplifier biasing circuit of Lab 2 build an amplifier with the voltage gain of  |A V | = 30 v/v ± = 10%. Measure all necessary parameters of the amp

Why we need biasing, Q. Why we Need biasing? Need for biasing : Baising...

Q. Why we Need biasing? Need for biasing : Baising is necessary to establish the quiescent operating point so that the device operates with the linear region without exceeding

Zener diode, where is a zener diode used in a car

where is a zener diode used in a car

Flow Chart and Cause-Effect Diagram, Flow Chart and Cause-Effect Diagram ...

Flow Chart and Cause-Effect Diagram Flow Charts Flow charts are pictorial representations of a procedure. By breaking the procedure down within its constituent steps, f

Determine the armature current, A 2300-V, three-phase, wye-connected, round...

A 2300-V, three-phase, wye-connected, round rotor synchronousmotor has a synchronous reactance of 3 per phase and an armature resistance of 0.25  per phase. The motor operates on

How can a jfet be used as a voltage controlled resistor, Q. How can a JFET ...

Q. How can a JFET be used as a voltage controlled resistor. Explain from drain characteristics? The region to the left of the pinch off locus is referred to as the ohmic region

Mr. Davis, The new kitchen is to be 20feet long and it''s width is 75% of i...

The new kitchen is to be 20feet long and it''s width is 75% of it''s length. The door to the kitchen is on the short wall and is 10% of the width of that wall. you want to put in m

Show npn common emitter amplifier, Q. Show NPN Common Emitter Amplifier? ...

Q. Show NPN Common Emitter Amplifier? The common emitter configuration lends itself to voltage amplification and is the most common configuration for transistor amplifiers.

Define time constant, Time constant Time constant, defines as time for ...

Time constant Time constant, defines as time for current achieve maximum (IM) if this maintain the early promotion rate current.

Combinational-sequential, Design combinational-sequential electronic logic ...

Design combinational-sequential electronic logic gate circuit for a car wash....

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd