Dynamic response of control systems, Electrical Engineering

Assignment Help:

Q. Dynamic Response of Control Systems?

The existence of transients (and associated oscillations) is a characteristic of systems that possess energy-storage elements and that are subjected to disturbances. Usually the complete solution of the differential equation providesmaximuminformation about the system's dynamic performance.

Consequently, whenever it is convenient, an attempt is made to establish this solution first. Unfortunately, however, this is not easily accomplished for high-order systems. Hence we are forced to seek out other easier and more direct methods, such as the frequency-response method of analysis.

Much of linear control theory is based on the frequency-response formulation of the system equations, and several quasi-graphical and algebraic techniques have been developed to analyze and design linear control systems based on frequency-response methods. Although frequency-response techniques are limited to relatively simple systems, and apply only to linear systems in the rigorous mathematical sense, they are still most useful in system design and the stability analysis of practical systems and can give a great deal of information about the relationships between system parameters (such as time constants and gains) and system response.

Once the transfer function of Equation is developed in terms of the complex frequency variable s, by letting s = jω, the frequency-response characteristic and the loop gain GH(jω) can be determined. The Bode diagram, displaying the frequency response and root-locus techniques, can be used to study the stability analysis of feedback control systems. The dc steady-state response, which becomes one component of the step response of the control system, can also be determined by allowing s to be zero in the transfer function. The step response, in turn, can be used as a measure of the speed of response of the control system. Thus, the transfer function obtained from the block diagram can be used to describe both the steady-state and the transient response of a feedback control system.


Related Discussions:- Dynamic response of control systems

Encoder, decimal to BCD code encoder active low

decimal to BCD code encoder active low

Lda load accumulator direct instruction, LDA  Load Accumulator Direct Inst...

LDA  Load Accumulator Direct Instruction This instruction is used to copy  data from  memory whose  address is directly specified in the  instruction to th e accumulator. The i

Single phase full wave controlled rectifier , Single Phase Full Wave Contro...

Single Phase Full Wave Controlled rectifier The single  phase  half  wave controlled  rectifier  produce only one pulse  of load  current  during  one cycle  of supply voltage

Features hindering developing countries from growing faster, Q. Describe so...

Q. Describe some of the features hindering developing countries from growing faster. Answer: One of the features that are able to be hold developing countries from growing fas

Static characteristics of the npn silicon bjt, Consider the common-emitter ...

Consider the common-emitter BJT circuit shown in Figure (a). The static characteristics of the npn silicon BJT are given in Figure (b) along with the load line. Calculate iB for v

Coupling, advantages and disadvantages of direct and r c coupling

advantages and disadvantages of direct and r c coupling

Calculate the total charge on the integrator, Q. Consider the dual-slope A/...

Q. Consider the dual-slope A/D converter of Figure. (a) Calculate the total charge on the integrator due to the input voltage Vin during the signal integration time T. (b) Ob

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd