Dynamic response of control systems, Electrical Engineering

Assignment Help:

Q. Dynamic Response of Control Systems?

The existence of transients (and associated oscillations) is a characteristic of systems that possess energy-storage elements and that are subjected to disturbances. Usually the complete solution of the differential equation providesmaximuminformation about the system's dynamic performance.

Consequently, whenever it is convenient, an attempt is made to establish this solution first. Unfortunately, however, this is not easily accomplished for high-order systems. Hence we are forced to seek out other easier and more direct methods, such as the frequency-response method of analysis.

Much of linear control theory is based on the frequency-response formulation of the system equations, and several quasi-graphical and algebraic techniques have been developed to analyze and design linear control systems based on frequency-response methods. Although frequency-response techniques are limited to relatively simple systems, and apply only to linear systems in the rigorous mathematical sense, they are still most useful in system design and the stability analysis of practical systems and can give a great deal of information about the relationships between system parameters (such as time constants and gains) and system response.

Once the transfer function of Equation is developed in terms of the complex frequency variable s, by letting s = jω, the frequency-response characteristic and the loop gain GH(jω) can be determined. The Bode diagram, displaying the frequency response and root-locus techniques, can be used to study the stability analysis of feedback control systems. The dc steady-state response, which becomes one component of the step response of the control system, can also be determined by allowing s to be zero in the transfer function. The step response, in turn, can be used as a measure of the speed of response of the control system. Thus, the transfer function obtained from the block diagram can be used to describe both the steady-state and the transient response of a feedback control system.


Related Discussions:- Dynamic response of control systems

Explain state-variable techniques, Q. Explain state-variable techniques? ...

Q. Explain state-variable techniques? The matrix formulations associated with state-variable techniques have largely replaced the block-diagram formulations. Computer software

Developed diagram of simplex progressive 2 layer lap winding, Q. Draw the d...

Q. Draw the developed diagram of a simplex progressive 2 layer lap winding for a 4 pole generator with 12 coils clearly indicating the position of brushes.   Sol.  No. o

Explain inductorless filters, Q. Explain Inductorless Filters Inductorl...

Q. Explain Inductorless Filters Inductorless (Active) Filters Filters (used to pass or eliminate certain frequency components of a signal) that are suitable for IC fabricati

Draw and explain a differential circuit, Q. Draw and explain a differential...

Q. Draw and explain a differential circuit A differentiator is a high pass RC circuit having a very small time constant. It is a circuit which gives an output voltage proportio

Show bandwidth of the system, A communication system for a voice-band (3 kH...

A communication system for a voice-band (3 kHz) channel is designed for a received SNR E b /N 0 at the detector of 30 dB when the transmitter power is Ps =-3 dBW. Find the value o

What is session layer, Q. What is Session Layer? Session layer is used ...

Q. What is Session Layer? Session layer is used to allow users to identify themselves when waiting access to the network. This is concerned with setting up and sustaining an op

Illustrate transformer coupling, Q. Illustrate Transformer coupling? In...

Q. Illustrate Transformer coupling? In this method the primary winding of the transformer acts as a collector load and the secondary winding transfers the a.c. output signal di

Use mesh analysis and nodal analysis to determine voltage, Q. Use (a) mesh ...

Q. Use (a) mesh analysis and (b) nodal analysis to determine the voltage ¯V at the terminals A-B of Figure.

Show the procedure of hex to decimal conversion, Q. Show the procedure of H...

Q. Show the procedure of Hex to Decimal Conversion? To convert from the Hex to the Decimal, multiply the value in each position by its hex weight and add each value. Using the

Effective negative voltage, Effective negative voltage: Effect negati...

Effective negative voltage: Effect negative voltage of get, when depend upon Pitch of voltage: the level of that results in id =0 ma is defined by eggs =vp with vp

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd