Dynamic process groups in parallel virtual machine , Computer Networking

Assignment Help:

Dynamic Process Groups

To generate and manage dynamic groups, a separate library libgpvm3.a must be connected with the user programs that make use of any of the set functions. Group management work is handled by a group server that is automatically in progress when the first group function is invoked. Any PVM task can connect or leave any group dynamically at any time without having to inform any other task in the affected groups. Tasks can shows messages to groups of which they are not members. Now we are giving some routines that manage dynamic processes:

  • int pvm_joingroup( char *group )

Enrolls the calling process in a named group. group is a group name of an presenting group. Returns instance number. Instance numbers run from 0 to the number of group members minus 1. In PVM 3, a task can connect multiple groups. If a process departs a group and then rejoins it, that process may receive a dissimilar instance number.

  • int info = pvm_lvgroup( char *group )

   Unenrolls the calling process from a named group.

  • int pvm_gettid( char *group, int inum )

Returns the tid of the process recognized by a group name and instance number.

  • int pvm_getinst( char *group, int tid )

Returns the instance number in a set of a PVM process.

  • int size = pvm_gsize( char *group )

Returns the number of members at present in the named group.

  • int pvm_barrier( char *group, int count )

Blocks the calling process up to all the processes in a group has called it. count shows the number of group members that must call pvm_barrier before they are all released.

  • int pvm_bcast( char *group, int msgtag )

Transmits the data in the active message buffer to a group of processes. msgtag is a message tag supplied by the user. It agree to the user's program to distinguish between dissimilar kinds of messages .It should be a nonnegative integer.

  • int info = pvm_reduce( void (*func)(), void *data, int count, int datatype, int msgtag, char *group, int rootginst)

 Performs a decrease operation over members of the particular group. func is function defining the operation performed on the global data. Predefined are, PvmMin, PvmMax ,PvmSum and PvmProduct. Users can describe their own function. data is pointer to the starting address of an array of local values. count shows the number of elements of datatype in the data array. Datatype is the kind of the entries in the data array. msgtag is the message tag supplied by the user. msgtag should be greater than 0. It allows the user's program to distinguish between different kinds of messages. group is the group name of an existing group. rootginst is the illustration number of group member who gets the result.

We are writing here programs that shows the use of these functions in the parallel programming:

Example 2: Hello.c

#include "pvm3.h" main()

{

int cc, tid, msgtag;

char buf[100];

printf("%x\n", pvm_mytid());

cc = pvm_spawn("hello_other", (char**)0, 0, "", 1, &tid);

if (cc == 1) {

msgtag = 1;

pvm_recv(tid, msgtag);

pvm_upkstr(buf);

printf("from t%x: %s\n", tid, buf);

} else

printf("can't start hello_other\n");

pvm_exit();

}

In this program, pvm_mytid( ), returns the TID of the running program (In this case, task id of the program hello.c). This program is intended to be invoked by hand; after printing its task id (obtained with pvm_mytid()), it starts a copy of another program called hello_other using the pvm_spawn() function. A successful spawn happens the program to implement a blocking receive using pvm_recv. After getting the message, the program prints the message sent by its counterpart, as well its task id; the buffer is take out from the message using pvm_upkstr. The final pvm_exit call dissociates the program from the PVM system.

hello_other.c

#include "pvm3.h"

main()

{

int ptid, msgtag;

char buf[100];

ptid = pvm_parent();

strcpy(buf, "hello, world from ");

gethostname(buf + strlen(buf), 64);

msgtag = 1; pvm_initsend(PvmDataDefault); pvm_pkstr(buf);

pvm_send(ptid, msgtag);

pvm_exit();

}

Program is a listing of the ''slave'' or spawned program; its first PVM action is to get the task id of the ''master'' using the pvm_parent call. This program then gets its hostname and transfers it to the master using the three-call sequence - pvm_initsend to initialize the send buffer; pvm_pkstr to place a string, architecture-independent manner and in a strongly typed, into the send buffer; and pvm_send to trasnfer it to the destination process shows by ptid, ''tagging'' the message with the number1.


Related Discussions:- Dynamic process groups in parallel virtual machine

Building a defense in networking, Q. Building a Defense in networking? ...

Q. Building a Defense in networking? When building a defense you must use a layered approach that includes securing - The network infrastructure the communications protocol

Explain token bus sublayer protocol, Token Bus Sublayer Protocol Se...

Token Bus Sublayer Protocol Send for some time then pass token If no data after that pass token right away Traffic classes 0, 2, 4 and 6 (highest) Internal s

Redundant routing information, Notice repetition of information in routing ...

Notice repetition of information in routing table for node 1 as given above in the figure. We can see that switch has only outgoing connection, all traffic must goes that connec

Connection establishment - tcp connection management, Connection Establishm...

Connection Establishment TCP transmits  data in full duplex mode. When two TCP is two machines are  connected they are able  to send segments to each other simultaneously. This

Define the microcells- routing and switching, Microcells As cells becom...

Microcells As cells become smaller, antennas move from the tops of tall buildings or hills, to the tops of small buildings or the sides of large buildings, and finally to lamp

describe the mips instructions - computer architecture, 1.  Detail for eac...

1.  Detail for each of the four following MIPS instructions, which actions are being taken at each of their five steps.  Do not forget to mention how and during which steps each in

Explain how reducing ineffective taxation, Question: (a) With mobile t...

Question: (a) With mobile telecommunications providing an important engine for growth, continuing to stimulate growth and to ensure mobiles remain affordable for all, will re

Internet protocols control protocols ipcp, Internet  Protocols  Control P...

Internet  Protocols  Control Protocols ( IPCP)  The  internet  protocols  control protocols  establishes  configures and terminates the TCP/ IP network  protocols  layer in a PPP

Types of Networking, How can I identify the difference types of networks

How can I identify the difference types of networks

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd