Draw the strategic form game - nash equilibrium, Game Theory

Assignment Help:

1. Consider a two-player game where player A chooses "Up," or "Down" and player B chooses "Left," "Center," or "Right". Their payoffs are as follows: When player A chooses "Up" and player B chooses "Left" player A gets $5 while player B gets $2. When player A chooses "Up" and player B chooses "Center" they get $6 and $1 correspondingly, while when player A chooses "Up" and player B chooses "Right" player A gets $7 while player B gets $3. Moreover, when player A chooses "Down" and player B chooses "Left" they get $6 and $2, while when player A chooses "Down" and player B chooses "Center" they both get $1. Finally, when player A chooses "Down" and player B chooses "Right" player A loses $1 and player B gets $1. Assume that the players decide simultaneously (or, in general, when one makes his decision doesn't know what the other player has chosen).

(a) Draw the strategic form game.

(b) Is there any dominant strategy for any of the players? Justify your answer.

(c) Is there any Nash equilibrium in pure strategies? Justify your answer fully and discuss your result. When an action is never chosen by a player it is because this action is DOMINATED by another action (or by a combination of other actions). Dominated strategies are assigned a probability of 0 in any Nash Equilibrium in mixed strategies. Given this observation answer the following parts of this problem:

(d) Find the best response functions and the mixed strategies Nash Equilibrium if each player randomizes over his actions.

(e) Show graphically the best responses and the Nash Equilibria (in pure and in mixed strategies).


Related Discussions:- Draw the strategic form game - nash equilibrium

Multiple item auction, Normal 0 false false false EN-US...

Normal 0 false false false EN-US X-NONE X-NONE

Nova, how do tron legacy made?

how do tron legacy made?

Order condition for identification, This condition is based on a counting ...

This condition is based on a counting rule of the variables included and excluded from the particular equation. It is a necessary but no sufficient condition for the identi

Ordinally symmetric game, Ordinally Symmetric Game Scenario Any game dur...

Ordinally Symmetric Game Scenario Any game during which the identity of the player doesn't amendment the relative order of the ensuing payoffs facing that player. In different w

Ordinal payoffs, Ordinal payoffs are numbers representing the outcomes of a...

Ordinal payoffs are numbers representing the outcomes of a game where the worth of the numbers isn't vital, however solely the ordering of numbers. for instance, when solving for a

Game 3 bargaining, GAME 3 Bargaining Two players A and B are chosen. P...

GAME 3 Bargaining Two players A and B are chosen. Player A offers a split of a dollar (whole dimes only). If B agrees, both get paid the agreed coins and the game is over. If

Strictly dominant strategy , A strategy is strictly dominant if, no matter ...

A strategy is strictly dominant if, no matter what the other players do, the strategy earns a player a strictly higher payoff than the other. Hence, a method is strictly dominant i

Japanese auction, A type of sequential second worth auction, just like an E...

A type of sequential second worth auction, just like an English auction during which an auctioneer frequently raises the present worth. Participants should signal at each worth lev

Button auction, A form of a Japanese auction (which is a form of an English...

A form of a Japanese auction (which is a form of an English auction) in which bidders hold down a button as the auctioneer frequently increases the current price. Bidders irrevocab

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd