Draw the letters s, p, r or u by using multiple bézier curve, Computer Graphics

Assignment Help:

Draw the letters S, P, R or U of English alphabet using multiple Bézier curves. 

A complete code for plotting Bezier curves is given previously. There in the code, control points for the Bézier curves are taken using mouse input.  Plot Bézier curves by first identifying the control points of the curve and then storing them in an array.  Always employ curves of same degree for plotting different parts of the alphabet letter.  In the following code, character  P  is generated using only quadratic Bézier curves. Straight line segments are also generated using a quadratic Bézier curve by choosing the control points on a straight line. 

/* Create the character P using multiple Bezier curves*/

#include

#include

#include  

#define n 2 //Uniform degree of all Bezier curves 

int ww=640,wh = 480; //Window Size

int OUT_CURVES = 18; //Counter for curves in outer boundary

int IN_CURVES=12; // Counter for curves in inner boundary

//Coordinates of control points for outer curves

int Px_Out[21]={90, 120, 160, 180, 180, 180, 180, 180, 160,

140, 120, 120,120, 120, 140, 140,140, 120, 90, 90, 90};

int Py_Out[21]={100, 100, 100, 100, 120, 140, 160, 180, 180,

180, 180, 230,230,240,240, 250, 260, 260, 260, 200,100};

//Coordinates of control points for inner curves

int Px_In[15]={120, 130, 140, 160, 160, 160, 160,

160,160,160,130,120,120,120,120};

int Py_In[15]={120, 120, 120, 120, 130, 140,

140,145,150,160,160,160,160,130,120};  

void myInit(){

    glClearColor(0.0,0.0,0.0,0.0);

    glColor3f(0.0,1.0,0.0);

    glPointSize(4.0); //Select point size 

    gluOrtho2D(0.0,640.0,0.0,480.0); 

    //For setting the clipping areas  

} //Initialize    

//Point plotting    

//Computing factorial of a number k

int factorial(int k) {

 int fact=1,i;

 for(i=1;i<=k;i++)

 fact=fact*i;

 return fact; }  

/* Draw a bezier curve with control points (x[i],y[i]),

i=0,..., n */

void drawBezier(int x[n+1], int y[n+1]) {

 double P_x,P_y;

 glColor3f(1.0,1.0,1.0); //Set drawing colour for curve

 for( double t=0.0;t<=1.0;t+=0.01){

  P_x=0.0; 

  P_y=0.0;

 glBegin(GL_POINTS); //Draw point (P_x,P_y) on the curve 

for( int i=0;i<=n;i++) {

 int cni=factorial(n)/(factorial(n-i)*factorial(i));

 P_x = P_x+(double)(x[i]*cni)*pow(1 - t,n-i)*pow(t,i); 

 P_y = P_y+(double)(y[i]*cni)*pow(1 - t,n-i)*pow(t,i); 

   }

 

   glVertex2f(P_x,wh -P_y); 

   }

 glEnd();

glFlush(); }

 

//Draw character P using Bezier curves

void Bezier()

{

 int Control_x[3], Control_y[3];

 //Outer Boundary curves 

 for (int j=0;j<=OUT_CURVES; j+=2){

  Control_x[0]=Px_Out[j];

  Control_y[0]=Py_Out[j];

  Control_x[1]=Px_Out[j+1];

  Control_y[1]=Py_Out[j+1];

  Control_x[2]=Px_Out[j+2];

  Control_y[2]=Py_Out[j+2];

 drawBezier(Control_x, Control_y);

 }

 //Inner Boundary curves

 for (int j=0;j<=IN_CURVES; j+=2){

  Control_x[0]=Px_In[j];

  Control_y[0]=Py_In[j];

  Control_x[1]=Px_In[j+1];

  Control_y[1]=Py_In[j+1];

  Control_x[2]=Px_In[j+2];

  Control_y[2]=Py_In[j+2];

 drawBezier(Control_x, Control_y);

 }

 glFlush();

}

//Draw character P on a mouse click

void myMouse(int button, int state, int x, int y) { 

 if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN) {      

  Bezier();

  glFlush();} 

}

void myDisplay() {

    glClear(GL_COLOR_BUFFER_BIT);

 //Bezier();

    glFlush();

}

int main() {

    glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);

    glutInitWindowSize(ww,wh);

    glutInitWindowPosition(200,200);

    glutCreateWindow("Bezier curves");

    glutMouseFunc(myMouse);

    glutDisplayFunc(myDisplay);

    myInit();

    glutMainLoop();

 return 0;

}

 Other characters R,S,U can be similarly plotted using appropriate coordinates of the control points.


Related Discussions:- Draw the letters s, p, r or u by using multiple bézier curve

Surface of revolution - modeling and rendering, Surface of Revolution - Mod...

Surface of Revolution - Modeling and Rendering In the previsions sections we have learned different type of techniques of generating curves, although if we wish to generate a

Overview of hardware primitives, Overview of Hardware Primitives With t...

Overview of Hardware Primitives With the advancement of computer technology, computer graphics has become a practical tool used in real life applications in diverse areas such

Axis of rotation - construction of a solid, Axis of Rotation - Construction...

Axis of Rotation - Construction of a solid with a translational sweep Figure:  (a)                                                                          Figure  (b)

Z-buffer, describe z-buffer algorithm removing hidden surface

describe z-buffer algorithm removing hidden surface

Important point about the de casteljeau algorithm, Important point about th...

Important point about the De casteljeau algorithm 1)      Bezier Curve: P (u) =    ................     (1) Here B n,i (u) = n c i u i (1 - u) n-i        ..

Chemistry-applications for computer animation, Chemistry: Computer animati...

Chemistry: Computer animation is a very helpful tool in chemistry. Several things in chemistry are too small to see, and handle or do experiments on like, molecules and atoms for

How to control the contents of the video buffer, OBJECTIVE Since graphic...

OBJECTIVE Since graphics plays a very important role in modern computer application, it is important to know more information about its hardware and software operations. Despite

What is the need of homogeneous coordinates, What is the need of homogeneou...

What is the need of homogeneous coordinates?  To perform more than one transformation at a time, use homogeneous coordinates or matrixes. They decrease unwanted calculations in

Polygon meshes - modeling and rendering, Polygon Meshes - Modeling and Rend...

Polygon Meshes - Modeling and Rendering A polygonal surface to be sketched may not be easy and may have enormous curls and curves. Illustration: a crushed piece of paper or cr

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd