Draw the direction field, Mathematics

Assignment Help:

Draw the direction field for the subsequent differential equation. Draw the set of integral curves for this differential equation.

 Solution:

 y′ = y - x

 To draw direction fields for this type of differential equation we initially know places where the derivative will be constant. To complete this we set the derivative into the differential equation equivalent to a constant, as c. It provides us a family of equations, termed as isoclines, which we can plot and on each of these curves the derivative will be a constant value of c.

Remember here that in the previous illustrations we looked at the isoclines for c = 0 to find the direction field started. In our case the family of isoclines is as:

c = y - x

These curve's graph for several values of c is demonstrated below.

206_Draw the direction field.png

Here, on each of these lines, or isoclines, the derivative will be not change and will have a value of c. At c = 0 isoclines the derivative will all the time have a value of zero and thus the tangents will all be horizontal. At c = 1 isoclines the tangents will all the time have a slope of 1 and at c = -2 isoclines the tangents will all the time have a slope of -2 and so on. Below is some tangents place in for each of these isoclines.

2236_Draw the direction field1.png

To add extra arrows for those areas among the isoclines start at say, c = 0 and move up to c = 1 and when we do this we raise the slope of the arrows or tangents from 0 to 1. It is demonstrated in the figure below.

892_Draw the direction field2.png

We can after that adds in integral curves as we did in the previous illustrations. It is demonstrated in the figure below.

2408_Draw the direction field3.png


Related Discussions:- Draw the direction field

Fuzzy decisionmaking using minimization of regret, why we use decision maki...

why we use decision making using minimization of regret method in uncertainty?

Find a formula for its frequency of oscillation, The frequency of oscillati...

The frequency of oscillation of an object suspended on a spring depends on the stiffness k of the spring (called the spring constant) and the mass m of the object. If the spring is

Unbounded intervals, Intervals which extend indefinitely in both the ...

Intervals which extend indefinitely in both the directions are known as unbounded intervals. These are written with the aid of symbols +∞  and -  ∞  . The various types

Find the depth of water in the pond, A lotus is 2m above the water in a pon...

A lotus is 2m above the water in a pond. Due to wind the lotus slides on the side and only the stem completely submerges in the water at a distance of 10m from the original positio

Hexagon, how many sides does a regular hexagon have?

how many sides does a regular hexagon have?

Differential equation, Find the normalized differential equation which has ...

Find the normalized differential equation which has {x, xex} as its fundamental set

Approximating definite integrals - integration techniques, Approximating De...

Approximating Definite Integrals - Integration Techniques In this section we have spent quite a bit of time on computing the values of integrals. Though, not all integrals can

Find the maxima and minima - equal pi, 1) Find the maxima and minima of f(x...

1) Find the maxima and minima of f(x,y,z) = 2x + y -3z subject to the constraint 2x^2+y^2+2z^2=1 2) Compute the work done by the force ?eld F(x,y,z) = x^2I + y j +y k in moving

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd