Draw the direction field, Mathematics

Assignment Help:

Draw the direction field for the subsequent differential equation. Draw the set of integral curves for this differential equation.

 Solution:

 y′ = y - x

 To draw direction fields for this type of differential equation we initially know places where the derivative will be constant. To complete this we set the derivative into the differential equation equivalent to a constant, as c. It provides us a family of equations, termed as isoclines, which we can plot and on each of these curves the derivative will be a constant value of c.

Remember here that in the previous illustrations we looked at the isoclines for c = 0 to find the direction field started. In our case the family of isoclines is as:

c = y - x

These curve's graph for several values of c is demonstrated below.

206_Draw the direction field.png

Here, on each of these lines, or isoclines, the derivative will be not change and will have a value of c. At c = 0 isoclines the derivative will all the time have a value of zero and thus the tangents will all be horizontal. At c = 1 isoclines the tangents will all the time have a slope of 1 and at c = -2 isoclines the tangents will all the time have a slope of -2 and so on. Below is some tangents place in for each of these isoclines.

2236_Draw the direction field1.png

To add extra arrows for those areas among the isoclines start at say, c = 0 and move up to c = 1 and when we do this we raise the slope of the arrows or tangents from 0 to 1. It is demonstrated in the figure below.

892_Draw the direction field2.png

We can after that adds in integral curves as we did in the previous illustrations. It is demonstrated in the figure below.

2408_Draw the direction field3.png


Related Discussions:- Draw the direction field

Example of division , Example of division: Divide 738 by 83. Soluti...

Example of division: Divide 738 by 83. Solution: Example: Divide 6409 by 28. Solution: Division could be verified through multiplying

Launching of a new product, Launching a new product (Blackberry Cube) Analy...

Launching a new product (Blackberry Cube) Analysis (target market) Product features Promotions and advertisement sample design (location)

The low temperature in Achorage, The low temperature in Anchorage, Alaska t...

The low temperature in Anchorage, Alaska today was negative four degrees. The low temperature in Los Angeles, California was sixty-three degreees. What is the difference in the two

Inverse functions, We have seen that if y is a function of x, then fo...

We have seen that if y is a function of x, then for each given value of x, we can determine uniquely the value of y as per the functional relationship. For some f

SOLUTIONS.., bunty and bubly go for jogging every morning. bunty goes aroun...

bunty and bubly go for jogging every morning. bunty goes around a square park of side 80m and bubly goes around a rectangular park with length 90m and breadth 60m.if they both take

Basic computation formulas of differentiation, Basic "computation" formulas...

Basic "computation" formulas : Next, let's take a quick look at some basic "computation" formulas that will let us to actually compute some derivatives. Formulas 1)   If f

Estimate how much did the budget increase, Previous year's budget was 12.5 ...

Previous year's budget was 12.5 million dollars. This year's budget is 14.1 million dollars. How much did the budget increase? Last year's budget must be subtracted from this y

Unitary method, what is history of Unitary method

what is history of Unitary method

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd