Draw the direction field, Mathematics

Assignment Help:

Draw the direction field for the subsequent differential equation. Draw the set of integral curves for this differential equation.

 Solution:

 y′ = y - x

 To draw direction fields for this type of differential equation we initially know places where the derivative will be constant. To complete this we set the derivative into the differential equation equivalent to a constant, as c. It provides us a family of equations, termed as isoclines, which we can plot and on each of these curves the derivative will be a constant value of c.

Remember here that in the previous illustrations we looked at the isoclines for c = 0 to find the direction field started. In our case the family of isoclines is as:

c = y - x

These curve's graph for several values of c is demonstrated below.

206_Draw the direction field.png

Here, on each of these lines, or isoclines, the derivative will be not change and will have a value of c. At c = 0 isoclines the derivative will all the time have a value of zero and thus the tangents will all be horizontal. At c = 1 isoclines the tangents will all the time have a slope of 1 and at c = -2 isoclines the tangents will all the time have a slope of -2 and so on. Below is some tangents place in for each of these isoclines.

2236_Draw the direction field1.png

To add extra arrows for those areas among the isoclines start at say, c = 0 and move up to c = 1 and when we do this we raise the slope of the arrows or tangents from 0 to 1. It is demonstrated in the figure below.

892_Draw the direction field2.png

We can after that adds in integral curves as we did in the previous illustrations. It is demonstrated in the figure below.

2408_Draw the direction field3.png


Related Discussions:- Draw the direction field

Trigonometry, how to change sin 24 degree in digits?

how to change sin 24 degree in digits?

Core concepts, Discuss mareketing core concepts analysing how they are used...

Discuss mareketing core concepts analysing how they are used in marketing hospitality product

Differential equations, solve the differential equation 8yk+2-6yk+1+yk=9 ,k...

solve the differential equation 8yk+2-6yk+1+yk=9 ,k=0 given that Y0=1 and y1=3/2

Non-homogeneous differential equations, The Definition- The definition of ...

The Definition- The definition of the Laplace transforms. We will also calculate a couple Laplace transforms by using the definition. Laplace Transforms- As the earlier secti

Algebra, how do i sole linear epuation

how do i sole linear epuation

Fundamental theorem of integral facts formulasproperties, Fundamental Theor...

Fundamental Theorem of Calculus, Part I If f(x) is continuous on [a,b] so, g(x) = a ∫ x f(t) dt is continuous on [a,b] and this is differentiable on (a, b) and as,

Mrs. farrell''s class has 26 students how many were absent, Mrs. Farrell's ...

Mrs. Farrell's class has 26 students. Just 21 were present on Monday. How many were absent? Subtract the number of students present from the total number within the class to de

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd