Draw frequency response curve, Electrical Engineering

Assignment Help:

Q. Sketch An Rc Coupled Two Stage Amplifier. Draw Its Frequency Response Curve And Account For Its Stages.

640_Draw Frequency Response Curve.png

The figure above shows a two stage RC coupled amplifier. The signal developed across collector resistor Rc of the first stage is coupled with the base of the second stage through a capacitor Cc. The coupling capacitor Cc blocks DC voltage from first stage, from reaching the second stage. So the DC biasing of the next stage is not interfered with. Hence Cc is also known as blocking capacitances.

Some loss of signal voltage always occurs due to drop across Cc. If we are amplifying signals above 10 hz, the scheme is more suitable. It is a convenient and least expensive way of building a multistage amplifier.

RC coupled amplifier finds its application in amplifiers used in TV,radio,tape recorders etc.

1052_FREQUENCY RESPONSE CURVE.png

FREQUENCY RESPONSE CURVE:

The performance of an amplifier is judged by observing whether all frequency components are amplified equally well. This we can observe on the frequency response curve.The curve illustrates how the magnitude of voltage gain of an amplifier varies with the frequency of the input signal.It can be plotted by measuring the voltage gain for different frequencies of the sinusoidal voltage fed to the input. The gain is constant for a limited band of frequencies.This frequency is called mid frequency range and mid band gain Avm.

On both sides of mid gain, the gain decreases.In mid frequency range,the coupling capacitor and the bypass capacitor works as good as being short circuited.

But when frequenc is low,the capacitors have greater value of reactance, since the reactance of the capacitor Xc= 1/2?fC.

The coupling capacitor affects the gain of the amplifier at low frequencies. R1 and R2 are the biasing resistors. Assuming that the bypasss capacitor is replaced by a short circuit.R1 and R2 are the input impedance of the next stage,which are in parallel and equivalent to the resistance R. The coupling capacitor Cc is in series with R and this series combination is in parallel with the collector resistor Rc.The whole of this impedance forms the AC load for the preceding stage. But the effective output of this stage, is the AC voltage developed across the resistor R. At the mid frequency the reactance of Cc is sufficiently small compared to the R.

We can treat it as a short circuit. R comes in parallel with Re. in which case the voltage across  Rc will be the same as the voltage across R.But at low frequencies, the reactance of Cc, is sufficiently large causing significant drop across Cc. As a result, the output voltage decreases.Lower the frequency of the signal higher will be the reactance of Cc, and more will be the reduction in output voltage.

Lower the frequency , higher will be the impedance of Ce, and greater is the reduction in gain. Due to the coupling capacitor Cc, the effective output voltage is reduced at low frequency, which is also responsible for the decrease of gain at low frequencies.

In mid frequency range(50 Hz to 20KHz),the voltage gain of the amplifier is constant, as is from the analysis. With the increase in the frequency in this range, the reactance of the coupling capacitor Cc reduces thereby increasing the gain but at the same time lowercapacitive reactance causes higher loading resulting in lower voltage gain. Thus the two effects cancel each other and uniform gain is obtained in mid frequency range. At low frequency range(below 50 Hz), higher capacitive reactance of coupling capacitor Cc allows very small part of signal to pass from one stage to the next and also because of higher reactance of emitter bypass capacitor CE, allows very small part of signal to pass from one stage to the next and also because of higher reactance of emitter bypass capacitor CE, the emitter resistor RE is not effectively shunted. Thus the voltage gain falls off at low frequencies.


Related Discussions:- Draw frequency response curve

Spectrum analyser, The spectrum analyser plots amplitude against frequency,...

The spectrum analyser plots amplitude against frequency, in other words it shows signals in the frequency domain. The spectrum analyser has the same trigger options as the oscillos

Electrical Machine, i have an assignment due for submission within two days...

i have an assignment due for submission within two days. It is all about transformer measurement manually and numerical results using Matlab.Is there anyone can do the job?

Energy conservation building codes, Energy Conservation Building Codes ...

Energy Conservation Building Codes It encompass the norms and standards of energy consumption expressed in terms of per square meter of the area wherein energy is used. The

Find the meter reading for sine wave, Q. ADMM (digital multi meter) reads t...

Q. ADMM (digital multi meter) reads true rms values of current. If the peak value of each of the following periodic current waves is 5 A, find the meter reading for: (a) a sine wav

Magnetic circuits, Magnetic circuits To  see  how  this   is  used   i...

Magnetic circuits To  see  how  this   is  used   in  practice, consider a coil of N turns wound onto a closed ring shaped former with a very high (note:    r (steel) = 200

Explain bandwidth and applications of rc coupled amplifier, Q. Explain the ...

Q. Explain the bandwidth for the curve and the applications of an RC coupled amplifier. Frequency response curve of an RC coupled amplifier was shown above(prev page). The cut

Colpitts oscillator circuit design, i would like to construct a colpitts os...

i would like to construct a colpitts oscillator using a series lc tank circuit as a feedback. the circuit will have a frequency of 150 Khz and it will drop when varying the value o

A, A microstrip antenna system operating at 915MHz must be designed using R...

A microstrip antenna system operating at 915MHz must be designed using Rogers RO3010 substrate with the thickness of 0.635mm.

Discuss how wavelet transform is suitable, Q. Discuss how Wavelet Transform...

Q. Discuss how Wavelet Transform is suitable for each application below. You can give examples  if you need to. a) multi-resolution analysis of signals and images b) space-fr

Distribution transformer connection, why the primary bushing of 7970/13.8 d...

why the primary bushing of 7970/13.8 distribution transformer blown up when connected wye on a 13.8 kv source?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd