Doubly linked lists-implementation, Data Structure & Algorithms

Assignment Help:

In any singly linked list, each of the elements contains a pointer to the next element. We have illustrated this before. In single linked list, traversing is probable only in one direction. Sometimes, we ought to traverse the list in both of the directions to improve performance of algorithms. To enable this, we require links in both the directions, i.e., the element has to have pointers to the right element in addition toto its left element. This type of list is called  asdoubly linked list.

141_DOUBLY LINKED LISTS-IMPLEMENTATION.png

Figure: A Doubly Linked List

Doubly linked list is described as a collection of elements, each of element consisting of three fields:

Ø  pointer to left element,

Ø  data field, &

Ø  pointer to right element.

Left link of the leftmost element is set to NULL that means that there is no left element to that. And, right link of the rightmost element is set to NULL that means that there is no right element to that.

ALGORITHM  (Creation)

Step 1                begin

Step 2                define a structure ELEMENT with  fields

Data

Left pointer

Right pointer

Step 3                declare any pointer by name head and using (malloc()) memory allocation  function  allocate  space  for  one  element  &  store  the address in head pointer

Head = (ELEMENT *) malloc(sizeof(ELEMENT))

Step 4                read the value for head->data head->left = NULL

head->right = (ELEMENT *) malloc(size of (ELEMENT))

Step 5                repeat step3 to create needed number of elements

Step 6                end

 

Program demonstrated the creation of a Doubly linked list.

/* CREATION OF A DOUBLY LINKED LIST */

/* DBLINK.C */

# include

# include

structdl_list

{

int data;

structdl_list *right;

structdl_list *left;

};

typedefstructdl_listdlist;

voiddl_create (dlist *);

void traverse (dlist *);

/* Function creates simple doubly linked list */

voiddl_create(dlist *start)

{

printf("\n Insert values of element -1111 to come out : ");

scanf("%d", &start->data);

if(start->data != -1111)

{

start->right = (dlist *) malloc(sizeof(dlist));

start->right->left = start;

start->right->right = NULL;

dl_create(start->right);

}

else

start->right = NULL;

}

/* Display the list */

void traverse (dlist *start)

{

printf("\n traversethe list usingright pointer\n");

do {

printf(" %d = ", start->data);

start = start->right;

}

while (start->right); /* Demonstrates value of last start only one time */

printf("\n traversethe listusing left pointer\n");

start=start->left;

do

{

printf(" %d =", start->data);

start = start->left;

}

while(start->right);

}

{

dlist *head;

head = (dlist *) malloc(sizeof(dlist));

head->left=NULL; head->right=NULL; dl_create(head);

printf("\n created doubly linked list is as ");

traverse(head);

}


Related Discussions:- Doubly linked lists-implementation

Demonstrate that dijkstra''s algorithm, Demonstrate that Dijkstra's algorit...

Demonstrate that Dijkstra's algorithm does not necessarily work if some of the costs are negative by finding a digraph with negative costs (but no negative cost dicircuits) for whi

A linear list of elements in which deletion can be done, A linear list of e...

A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is called as a   Queue.

Advantages of dry running a flowchart, Advantages of dry running a flowchar...

Advantages of dry running a flowchart When dry running a flowchart it's advisable to draw up a trace table illustrating how variables change their values at every stage in the

What do you understand by tree traversal, What do you understand by tree tr...

What do you understand by tree traversal? The algorithm walks by the tree data structure and performs some computation at everynode in the tree. This process of walking by the

Explain b tree (binary tree), B Tree Unlike a binary-tree, every node o...

B Tree Unlike a binary-tree, every node of a B-tree may have a variable number of keys and children. The keys are stored in non-decreasing order. Every key has an associated ch

Graph, adjacency multilist

adjacency multilist

Infix expression has balanced parenthesis or not, Q. By making use of stack...

Q. By making use of stacks, write an algorithm to determine whether the infix expression has balanced parenthesis or not.

Explain about greedy technique, Explain about greedy technique The  gre...

Explain about greedy technique The  greedy  method  suggests  constructing  a   solution  to  an  optimization  problem   by  a sequence of steps, every expanding a partially c

Computational complexity, Generally, Computational complexity of algorithms...

Generally, Computational complexity of algorithms are referred to through space complexity (space needed for running program) and time complexity (time needed for running the progr

Hashing, explain collision resloving techniques in hasing

explain collision resloving techniques in hasing

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd