Doubly linked lists-implementation, Data Structure & Algorithms

Assignment Help:

In any singly linked list, each of the elements contains a pointer to the next element. We have illustrated this before. In single linked list, traversing is probable only in one direction. Sometimes, we ought to traverse the list in both of the directions to improve performance of algorithms. To enable this, we require links in both the directions, i.e., the element has to have pointers to the right element in addition toto its left element. This type of list is called  asdoubly linked list.

141_DOUBLY LINKED LISTS-IMPLEMENTATION.png

Figure: A Doubly Linked List

Doubly linked list is described as a collection of elements, each of element consisting of three fields:

Ø  pointer to left element,

Ø  data field, &

Ø  pointer to right element.

Left link of the leftmost element is set to NULL that means that there is no left element to that. And, right link of the rightmost element is set to NULL that means that there is no right element to that.

ALGORITHM  (Creation)

Step 1                begin

Step 2                define a structure ELEMENT with  fields

Data

Left pointer

Right pointer

Step 3                declare any pointer by name head and using (malloc()) memory allocation  function  allocate  space  for  one  element  &  store  the address in head pointer

Head = (ELEMENT *) malloc(sizeof(ELEMENT))

Step 4                read the value for head->data head->left = NULL

head->right = (ELEMENT *) malloc(size of (ELEMENT))

Step 5                repeat step3 to create needed number of elements

Step 6                end

 

Program demonstrated the creation of a Doubly linked list.

/* CREATION OF A DOUBLY LINKED LIST */

/* DBLINK.C */

# include

# include

structdl_list

{

int data;

structdl_list *right;

structdl_list *left;

};

typedefstructdl_listdlist;

voiddl_create (dlist *);

void traverse (dlist *);

/* Function creates simple doubly linked list */

voiddl_create(dlist *start)

{

printf("\n Insert values of element -1111 to come out : ");

scanf("%d", &start->data);

if(start->data != -1111)

{

start->right = (dlist *) malloc(sizeof(dlist));

start->right->left = start;

start->right->right = NULL;

dl_create(start->right);

}

else

start->right = NULL;

}

/* Display the list */

void traverse (dlist *start)

{

printf("\n traversethe list usingright pointer\n");

do {

printf(" %d = ", start->data);

start = start->right;

}

while (start->right); /* Demonstrates value of last start only one time */

printf("\n traversethe listusing left pointer\n");

start=start->left;

do

{

printf(" %d =", start->data);

start = start->left;

}

while(start->right);

}

{

dlist *head;

head = (dlist *) malloc(sizeof(dlist));

head->left=NULL; head->right=NULL; dl_create(head);

printf("\n created doubly linked list is as ");

traverse(head);

}


Related Discussions:- Doubly linked lists-implementation

Example which cause problems for hidden-surface algorithms, Example which c...

Example which cause problems for some hidden-surface algorithms Some special cases, which cause problems for some hidden-surface algorithms, are penetrating faces and cyclic ov

Two sparce matrices multipilcation algorithm, Write an algorithm for multi...

Write an algorithm for multiplication of two sparse matrices using Linked Lists.

Draws a rectangular grid algorithms, Prepare a GUI called Hotplate GUI that...

Prepare a GUI called Hotplate GUI that holds a central panel that draws a rectangular grid that represents Element objects which should be held in a 2-dimensional array. The applic

Define a sparse metrics, Define a sparse metrics. A matrix in which num...

Define a sparse metrics. A matrix in which number of zero entries are much higher than the number of non zero entries is known as sparse matrix. The natural method of showing m

What is a binary search tree (bst), What is a Binary Search Tree (BST)? ...

What is a Binary Search Tree (BST)? A binary search tree B is a binary tree every node of which satisfies the three conditions: 1.  The value of the left-subtree of 'x' is le

Search engines - applications of linear and binary search, Search engines e...

Search engines employ software robots to survey the Web & build their databases. Web documents retrieved & indexed through keywords. While you enter a query at search engine websit

Hw7, Handout 15 COMP 264: Introduction to Computer Systems (Section 001) Sp...

Handout 15 COMP 264: Introduction to Computer Systems (Section 001) Spring 2013 R. I. Greenberg Computer Science Department Loyola University Water TowerCampus, Lewis Towers 524 82

Dijkstras algorithm, Djikstra's algorithm (named after it is discovered by ...

Djikstra's algorithm (named after it is discovered by Dutch computer scientist E.W. Dijkstra) resolves the problem of finding the shortest path through a point in a graph (the sour

Euclidean algorithm, The Euclidean algorithm is an algorithm to decide the ...

The Euclidean algorithm is an algorithm to decide the greatest common divisor of two positive integers. The greatest common divisor of N and M, in short GCD(M,N), is the largest in

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd