Division of two like terms, Mathematics

Assignment Help:

Case 1: Suppose we have two terms 8ab and 4ab. On dividing the first by the second we have 8ab/4ab = 2 or 4ab/8ab = (1/2) depending on whether we consider either 8ab or 4ab as the first term. Irrespective of the order of division, the quotient of two positive terms will be a positive term.

Case 2: What will be the quotient if you divide -9ac by -3ac. We will get -9ac/-3ac = 3. In case of -3ac/-9ac, we will get 1/3. As in case 1, irrespective of the order of division, the quotient will be a positive term.

(Note: Observe that -9ac/-3ac is same as -9ac x 1/-3ac; 1/-3ac being the reciprocal of -3ac.)

We took monomials only for the sake of understanding the underlying principles in a better manner. However, these principles can be applied equally well to binomials, trinomials and polynomials also. The next part deals with them.

Now, do you find any difference between -7abc - 3bc and -7abc + (-3bc) and -7abc - (-3bc). The terms -7abc - 3bc and -7abc + (-3bc) are one and the same, the third expression is certainly different. The idea of introducing the bracket is to convey that the quantity within the brackets ought to be treated as a single quantity. Therefore, whenever one removes the brackets the necessary changes ought to be made specially with respect to the signs of the terms. Otherwise, you may end up with a wrong solution. And since we are mainly concerned with the multiplication aspect whenever brackets come into picture we apply the same four rules we have seen while going through multiplication of like and unlike terms. The expression -7abc + (-3bc) on removal of the brackets will be -7abc + x -3bc, where ‘x' is the multiplicative sign. Since + x - gives us -, the expression will get simplified to -7abc - 3bc. The third expression -7abc - (-3bc) would be simplified to -7abc + 3bc on removal of the brackets. Regarding the change of signs whenever brackets are present, we make the following two important observations:

Whenever a ‘+' sign precedes a bracket, the brackets can be removed without changing the signs of the elements within the brackets.

Whenever a ‘-' sign precedes a bracket, they can be removed only by changing the signs of the elements within the brackets.

From these observations we also conclude that if you want to introduce a ‘+' sign and include some of the terms of an expression in brackets, you can do so without changing the sign of the terms irrespective of them being ‘+' or ‘-'. That is, -7abc - 3ab can be written as -7abc + (-3ab) or 8a + bc can be written as 8a + (+bc). But if you want to introduce a ‘-' sign, more attention has to be paid. Every time you want to introduce a ‘-' sign, the signs of the terms to be included in the bracket has to be changed. In other words, a term which has a ‘-' sign should be changed to ‘+' sign and the term which has a ‘+' sign should be changed to ‘-' sign. Now we look at few examples as to how the basic operations are conducted in case of binomials, trinomials and polynomials.


Related Discussions:- Division of two like terms

Solve the inequality |x - 1| + |x - 2|, Solve the inequality |x - 1| + |x -...

Solve the inequality |x - 1| + |x - 2|≤ 3. Working Rule:    First of all measure the expression to zero whose modulus happens in the given inequation and from this search the va

Differntial equation, (3x+2)^2 d^2y/dx^2+3(3x+2)dy/dx-36y=3x^2+4x+1

(3x+2)^2 d^2y/dx^2+3(3x+2)dy/dx-36y=3x^2+4x+1

Function, f(x)=x^2-5x+6, determine inverse of f(x)!

f(x)=x^2-5x+6, determine inverse of f(x)!

Intermediate value theorem, Intermediate Value Theorem Suppose that f(x...

Intermediate Value Theorem Suppose that f(x) is continuous on [a, b] and allow M be any number among f(a) and f(b).   There then exists a number c such that, 1. a 2. f (

Distinct eigenvalues, It's now time to do solving systems of differential e...

It's now time to do solving systems of differential equations. We've noticed that solutions to the system, x?' = A x? It will be the form of, x? = ?h e l t Here l and

Find the average, The center of a national park is located at (0,0). A spec...

The center of a national park is located at (0,0). A special nature preserve is bounded by by straight lines connecting the points A at (3,2), B at (5,1), C at (8,4) and D at (6,5)

COS Sheets, How do I find percentages with doing COS Sheets

How do I find percentages with doing COS Sheets

Polynomials in one variable, Polynomials In this section we will discu...

Polynomials In this section we will discuss about polynomials.  We will begin with polynomials in one variable. Polynomials in one variable Polynomials in one variable

Rates of change or instantaneous rate of change, Rates of Change or instant...

Rates of Change or instantaneous rate of change ; Now we need to look at is the rate of change problem.  It will turn out to be one of the most significant concepts . We will c

Naming fractions greater than 1, the 10 miles assigned to the chess club st...

the 10 miles assigned to the chess club start at the 10 mile point and go to the 20 mile point when the chess club members have cleaned 5/8 of their 10 mile section between which m

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd