Division, Mathematics

Assignment Help:

Before taking up division of polynomials, let us acquaint ourselves with some basics. Suppose we are asked to divide 16 by 2. We know that on dividing 16 by 2 we get 8. In mathematics we call 16, 2 and 8 by specific names. 16 is called dividend, 2 is called the divisor and 8 is the quotient. However, it is not always that we get an integer like 8 when we divide a number by another. For instance, divide 9 by 2. In addition to the dividend (9), divisor (2) and quotient (4) we are left with another term 1. This is referred to as the remainder. When the dividend is not exactly divisible by the divisor we get a remainder. We find these terms even when one expression is divided by another. Also we follow these rules.

  1. We arrange the terms of the divisor and the dividend in ascending or descending powers of some common letter. Ascending order refers to arranging terms from lower power to higher powers and descending orders refers to opposite of this. Usually we write them in the descending order.

  2. Divide the term on the left of the dividend by the term left of the divisor and put the result in the quotient.

  3. Multiply the whole divisor by this number (quotient) and put the resultant product under the dividend.

  4. Subtract the product from the dividend and bring down the required number of terms as may be deemed necessary.

  5. Repeat this procedure until all the terms in the dividend have been brought down.

We understand this with the help of a couple of examples.

Example 

Divide x2 + 4x + 4 by x + 2.

We find that the terms of the dividend (x2 + 4x + 4) and the divisor (x + 2) are already in the descending order. The left most term in the dividend is x2, while in the divisor it is x. We find the quotient as

629_division.png

We multiply the divisor x + 2 with this quotient x. We get x2 + 2x. We write this under the dividend as shown.

Others

  x + 2 )

x2 + 4x + 4

( x + 2

 

 (-)

x2 + 2x 

 


 

 

         2x + 4

 

 

 

(-)    2x + 4  

 


 

 

                 0

 


On subtracting x2 + 2x from the dividend we obtain 2x + 4. (x2 + 4x + 4 - (x2 + 2x)    = x2 + 4x + 4 - x2 - 2x). We write this expression as shown above.

At this stage, we take the left most quantity of the difference (dividend - product) and that of the divisor and obtain their quotient. It will be 

2029_division1.png

Since the sign of the quotient is positive we write it as shown. Then we multiply x + 2 with 2. That will be 2x + 4. We write under the difference got earlier and subtract it from the difference. We get 2x + 4 - (2x + 4) = 2x + 4 - 2x - 4 = 0. This is shown in the example above. Since the dividend is exactly divisible by the divisor the remainder is zero.

After solving this problem can we say that x + 2 is a factor of x2 + 4x + 4? Of course we can. As we write 8 = 2.4 or 1.8, we can write

                            x2 + 4x + 4 = (x + 2)(x + 2)

(Note: Division of expressions where some of the terms are fractions is also carried out in the same manner we have seen above.)


Related Discussions:- Division

Formulas of surface area - applications of integrals, Formulas of Surface A...

Formulas of Surface Area - Applications of integrals S = ∫ 2Πyds          rotation about x-axis S = ∫ 2Πxds          rotation about y-axis Where, ds = √ 1 + (1+ (dy /

Expect mean, Your factory has a machine for drilling holes in a sheet metal...

Your factory has a machine for drilling holes in a sheet metal part.  The mean diameter of the hole is 10mm with a standard deviation of 0.1mm. What is the probability that any

Formular for x and y, I have a simple right angle triangle. All I am given...

I have a simple right angle triangle. All I am given is h (the hypotenuse) and that ratio of x:y is 2:3. What is the formula to find x and y in terms of h?

Solve cos( 4 ) = -1 trig function, Solve cos( 4 θ ) = -1 . Solution ...

Solve cos( 4 θ ) = -1 . Solution There actually isn't too much to do along with this problem.  However, it is different from all the others done to this point.  All the oth

Algebra, If a^n+1 + b^n+1/a^n + b^n is the arithmetic mean of a and b then ...

If a^n+1 + b^n+1/a^n + b^n is the arithmetic mean of a and b then find n. Answer:Arithmatic mean of a,b is =(a+b)/2  from the problem (a+b)/2=(a^n+1 +b ^n+1)/(a^n+b^n)  then (a+

What was the temperature at midnight, The temperature at 6 P.M. was 31°F. T...

The temperature at 6 P.M. was 31°F. Through midnight, it had dropped 40°F. What was the temperature at midnight? Visualize a number line. The drop from 31° to 0° is 31°. There

One tailed test, One Tailed Test It is a test where the alternative hy...

One Tailed Test It is a test where the alternative hypothesis (H 1 :) is only concerned along with one of the tails of the distribution for illustration, to test a business co

Solve simultaneous equations by graphical method, Solve the following pairs...

Solve the following pairs of simultaneous equations by elimination method i.2x+y=10 ii. 3x+y=6 3x-2y=1 5x+y=8 solve the following simult

Calculus, I need help fast with my calculus work

I need help fast with my calculus work

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd