Division, Mathematics

Assignment Help:

Before taking up division of polynomials, let us acquaint ourselves with some basics. Suppose we are asked to divide 16 by 2. We know that on dividing 16 by 2 we get 8. In mathematics we call 16, 2 and 8 by specific names. 16 is called dividend, 2 is called the divisor and 8 is the quotient. However, it is not always that we get an integer like 8 when we divide a number by another. For instance, divide 9 by 2. In addition to the dividend (9), divisor (2) and quotient (4) we are left with another term 1. This is referred to as the remainder. When the dividend is not exactly divisible by the divisor we get a remainder. We find these terms even when one expression is divided by another. Also we follow these rules.

  1. We arrange the terms of the divisor and the dividend in ascending or descending powers of some common letter. Ascending order refers to arranging terms from lower power to higher powers and descending orders refers to opposite of this. Usually we write them in the descending order.

  2. Divide the term on the left of the dividend by the term left of the divisor and put the result in the quotient.

  3. Multiply the whole divisor by this number (quotient) and put the resultant product under the dividend.

  4. Subtract the product from the dividend and bring down the required number of terms as may be deemed necessary.

  5. Repeat this procedure until all the terms in the dividend have been brought down.

We understand this with the help of a couple of examples.

Example 

Divide x2 + 4x + 4 by x + 2.

We find that the terms of the dividend (x2 + 4x + 4) and the divisor (x + 2) are already in the descending order. The left most term in the dividend is x2, while in the divisor it is x. We find the quotient as

629_division.png

We multiply the divisor x + 2 with this quotient x. We get x2 + 2x. We write this under the dividend as shown.

Others

  x + 2 )

x2 + 4x + 4

( x + 2

 

 (-)

x2 + 2x 

 


 

 

         2x + 4

 

 

 

(-)    2x + 4  

 


 

 

                 0

 


On subtracting x2 + 2x from the dividend we obtain 2x + 4. (x2 + 4x + 4 - (x2 + 2x)    = x2 + 4x + 4 - x2 - 2x). We write this expression as shown above.

At this stage, we take the left most quantity of the difference (dividend - product) and that of the divisor and obtain their quotient. It will be 

2029_division1.png

Since the sign of the quotient is positive we write it as shown. Then we multiply x + 2 with 2. That will be 2x + 4. We write under the difference got earlier and subtract it from the difference. We get 2x + 4 - (2x + 4) = 2x + 4 - 2x - 4 = 0. This is shown in the example above. Since the dividend is exactly divisible by the divisor the remainder is zero.

After solving this problem can we say that x + 2 is a factor of x2 + 4x + 4? Of course we can. As we write 8 = 2.4 or 1.8, we can write

                            x2 + 4x + 4 = (x + 2)(x + 2)

(Note: Division of expressions where some of the terms are fractions is also carried out in the same manner we have seen above.)


Related Discussions:- Division

Trigonometry, Ashow that sec^2x+cosec^2x cannot be less than 4

Ashow that sec^2x+cosec^2x cannot be less than 4

Solve for, a)Solve for ?, if tan5? = 1. Ans:    Tan 5? = 1        ⇒ ? ...

a)Solve for ?, if tan5? = 1. Ans:    Tan 5? = 1        ⇒ ? =45/5 ⇒ ?=9 o . b)Solve for ? if S i n ?/1 + C os ? + 1 +  C os ?/ S i n ? = 4 . Ans:  S i n ?/1 +

Finish the work., six men and Eight boys can finish a piece of work in 14 d...

six men and Eight boys can finish a piece of work in 14 days while  eight men and twelve boys can do it in 10 days. Find the time taken by  1man alone and that by 1boy alone to fin

Example of integrals involving trig functions, Example of Integrals Involvi...

Example of Integrals Involving Trig Functions Example: Estimate the following integral. ∫ sin 5 x dx Solution This integral no longer contains the cosine in it that

Hypothesis testing, Hypothesis Testing Definition of Hypothesis Testing...

Hypothesis Testing Definition of Hypothesis Testing - A hypothesis is a claim or an opinion about an issue or item.  Hence it has to be tested statistically in order to esta

Problem solving, if you start a business and john creates 6 t shirts more t...

if you start a business and john creates 6 t shirts more than pedro and pedro four t shirts less than eva and between the three of then made 22 tshirts, how many t-shirts made each

Complex Numbers, How do you compute the phase/angle of a complex number? i....

How do you compute the phase/angle of a complex number? i.e 1+2i

Multiplication of two like terms with same signs, Case 1: Suppose we...

Case 1: Suppose we have two terms 7ab and 3ab. When we multiply these two terms, we get 7ab x 3ab = (7 x 3) a 1 + 1 . b 1 + 1  ( Therefore, x m . x n = x m +

Find the probability of having 53 sundays in leap year , Find the probabili...

Find the probability of having 53 Sundays in (i) a leap year                           (ii) a non leap year       (Ans:2/7 , 1/7 ) Ans:          An ordinary year has 365 da

Christie paid 5% sales tax purchase how much did she spend, Christie purcha...

Christie purchased a scarf marked $15.50 and gloves marked $5.50. Both items were on sale for 20% off the marked price. Christie paid 5% sales tax on her purchase. How much did she

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd