Divides a given line segment internally in the ratio of 1:3, Mathematics

Assignment Help:

Divides a given line segment internally in the ratio of 1:3

Construction :
i )Draw a ray AX making an acute angle with AB.

ii) Mark 4 points at equal distance. on AX

Let the first point be M and fourth point be N

iii) Join NB.
iv) Draw a line parallel to NB through M.
v) It meets the line AB at P.
vi) P is the required point which divides AB in the ratio1:3 internally.

ii )

1378_line.png


Related Discussions:- Divides a given line segment internally in the ratio of 1:3

Find the area of the shaded region of square, In the adjoining figure, ABCD...

In the adjoining figure, ABCD is a square of side 6cm.  Find the area of the shaded region. Ans:    From P draw PQ ⊥ AB AQ = QB = 3cm (Ans: 34.428 sq cm) Join PB

The square of a positive number is 49 what is the number, The square of a p...

The square of a positive number is 49. What is the number? Let x = the number.  The sentence that is , "The square of a positive number is 49," translates to the equation x 2

Standard trig equation, "Standard" trig equation: Now we need to move into...

"Standard" trig equation: Now we need to move into a distinct type of trig equation. All of the trig equations solved to this point were, in some way, more or less the "standard"

Variation of parameters, In the previous section we looked at the method of...

In the previous section we looked at the method of undetermined coefficients for getting a particular solution to p (t) y′′ + q (t) y′ + r (t) y = g (t)    .....................

Shortcuts of fraction and squareroot, I am student of M.com and also doing...

I am student of M.com and also doing practice to crack bank or other competitive exam..please tell me shortcuts

Volumes of solids of revolution - method of rings, Volumes of Solids of Rev...

Volumes of Solids of Revolution / Method of Rings In this section we will begin looking at the volume of solid of revolution. We have to first describe just what a solid of rev

Length of the hypotenuse , A right triangular prism has volume equal to 288...

A right triangular prism has volume equal to 288 cm^3. The height of the prism is 3 cm. One of the bases of the triangular face (not the hypotenuse) is equal to 12 cm, determine th

Y=Theea[sin(inTheeta)+cos(inTheeta)], Y=θ[SIN(INθ)+COS(INθ)],THEN FIND dy÷d...

Y=θ[SIN(INθ)+COS(INθ)],THEN FIND dy÷dθ. Solution)  Y=θ[SIN(INθ)+COS(INθ)] applying u.v rule then dy÷dθ={[ SIN(INθ)+COS(INθ) ] dθ÷dθ }+ {θ[ d÷dθ{SIN(INθ)+COS(INθ) ] }    => SI

Solve the algebraic equestions, Solve the following equestions i.2x-8=8 ...

Solve the following equestions i.2x-8=8 ii.3x+2/5=4 iii.8/3x-2=2 iv.0.6x-5=7

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd