Distinct eigenvalues-sketching the phase portrait, Mathematics

Assignment Help:

Sketch the phase portrait for the given system.

1425_DISTINCT EIGENVALUES-SKETCHING THE PHASE PORTRAIT.png

Solution:

From the last illustration we know that the eigenvectors and eigenvalues for this system are,

135_DISTINCT EIGENVALUES-SKETCHING THE PHASE PORTRAIT1.png

This turns out; it is all the information which we will require to sketch the direction field.  However we will relate things back to our solution hence we can notice that things are going correctly.

We'll start through sketching lines which follow the direction of the two eigenvectors. It gives,

2288_DISTINCT EIGENVALUES-SKETCHING THE PHASE PORTRAIT2.png

Here, from the first illustration our general solution is,

623_DISTINCT EIGENVALUES-SKETCHING THE PHASE PORTRAIT3.png

If we have c2 = 0 so that the solution is an exponential times a vector and all that the exponential does is affect or influence the magnitude of the vector and the constant c1 will have an effect on both the sign and the magnitude of the vector. Conversely, the trajectory under this case will be a straight line which is, parallel to the vector, ?h(1). Also see that as t rises the exponential will get smaller and much smaller and thus the trajectory will be moving in directions of the origin. If c1>0 the trajectory will be present in Quadrant II and if c1<0 the trajectory will be present in Quadrant IV.

Therefore the line in the graph above marked by ?h(1) will be a sketch of the trajectory consequent to c2 = 0 and this trajectory will approach the origin as t raises.

 

If we this time turn things around and see the solution corresponding to containing c1 = 0 we will have a trajectory which is parallel to ?h(2).  Also, since the exponential will rise as t raises and so in this case the trajectory will now move away from the origin as t rises. We will denote it with arrows on the lines into the graph above.

713_DISTINCT EIGENVALUES-SKETCHING THE PHASE PORTRAIT4.png

Remember that we could have found this information with truly going to the solution. All we actually require to do is look at the eigenvalues. Eigenvalues this are negative will correspond to solutions which will move in directions of the origin as t rises in a direction which is parallel to its eigenvector. Similarly eigenvalues this are positive move away from the origin as t rises in a direction which will be parallel to its eigenvector.

If both constants are into the solution we will contain a combination of these behaviors. For huge negative t's the solution will be dominated through the portion which has the negative eigenvalue as in these cases the exponent will be huge and positive. Trajectories for huge negative t's will be parallel to ?h(1) and moving in similar direction.

 Solutions for large positive t's will be dominated through the portion with the positive eigenvalue. Trajectories under this case will be parallel to ?h(2) and moving in similar direction.

Generally, it looks like trajectories will start "near" ?h(1), move in towards the origin and after that as they get closer to the origin they will start moving in directions of ?h(2) and then continue up along that vector.  Sketching several of these in will provide the following phase portrait. Now there is a sketch of this along with the trajectories consequent to the eigenvectors marked in blue.

177_DISTINCT EIGENVALUES-SKETCHING THE PHASE PORTRAIT5.png

During this case the equilibrium solution (0, 0) is termed as a saddle point and is unstable. During this case unstable implies that solutions move away from this as t increases.


Related Discussions:- Distinct eigenvalues-sketching the phase portrait

20 MARK QUESTION, Let E; F be 2 points in the plane, EF has length 1, and l...

Let E; F be 2 points in the plane, EF has length 1, and let N be a continuous curve from E to F. A chord of N is a straight line joining 2 points on N. Prove if 0 Prove that N ha

Find the quotient and remainder, Question: Find the quotient and remain...

Question: Find the quotient and remainder when f(x) = x 5 - x 4 - 4x 3 + 2x + 3 is divided by g(x) = x-2. Make sure the quotient and remainder are clearly identified.

Evaluate relate rate in shape of a cone a tank , In the shape of a cone a t...

In the shape of a cone a tank of water is leaking water at a constant rate of 2 ft 3 /hour .  The base radius of the tank is equal to 5 ft and the height of the tank is 14 ft.

Testing the hypothesis equality of two variances, Testing the hypothesis eq...

Testing the hypothesis equality of two variances The test for equality of two population variances is based upon the variances in two independently chosen random samples drawn

Calculate the amplitude of trigonometry function, Consider the trigonometri...

Consider the trigonometric function f(t) = -3 + 4 cos(Π/ 3 (t - 3/2 )). (a) What is the amplitude of f (t)? (b) What is the period of f(t)? (c) What are the maximum and mi

Simulation and Modeling, I have some sample simulation and modeling practic...

I have some sample simulation and modeling practice questions using isee Stella software.

Definition of relation, Definition of Relation A relation is a set of o...

Definition of Relation A relation is a set of ordered pairs. It seems like an odd definition however we'll require it for the definition of a function though, before actuall

Liniar Algebra, Assume A and B are symmetric. Explain why the following are...

Assume A and B are symmetric. Explain why the following are symmetric or not. 1) A^2 - B^2 2) (A+B)(A-B) 3) ABA 4) ABAB 5) (A^2)B

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd