Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
In this project you will write a program to produce a discrete time simulation of a queue as shown in Fig. 1. Time is slotted on the input and the output. Each input packet follows a Bernoulli process. In a given time slot the independent probability that a packet arrives in a time slot is p, while the probability that the packet will be serviced is q. One packet fills one time slot.
The queue can store up to four packets (not the five shown in the diagram above). All packets are processed on a first come - first served basis. Assume that when a packet is serviced all other packets in a queue (if any) are shifted instantaneously towards the output. Each slot departures from the queue are processed before arrivals.
In your discrete event simulation the program will mimic the operation of the queue and collect statistics. More specifically, you will need to collect (a) throughput and (b) delay statistics for different values of p (p = 0.02, 0.04 up to 1.0 in steps of 0.02), and for a fixed value of q = 0.75. To obtain an accurate statistics you should simulate at least ten thousand time slots for each value of p. Note that you ARE NOT allowed to implement the model equation in the program - but you can use them as a check.
The average throughput is just the number of serviced packets divided by the number of time slots. The average delay of the queue is an average number of time slots a packet is waiting in a queue before it gets serviced (i.e., it is the total number of time slots which all serviced packets spend in the queue divided by the total number of serviced packets). For the delay statistics, it is convenient to store your packets in a linked list and associate the time slot tag with each packet.
This algorithm inputs 5 values and outputs how many input numbers were positive and how many were negative. Data to be used: N = 1, -5, 2, -8, -7
one to many one to one many to many many to one
Board coloring , C/C++ Programming
Comparison Techniques There are several techniques for determining the relevancy and relative position of two polygons. Not all tests may be used with all hidden-surface algori
Q. Write down the binary search algorithm and trace to search element 91 in following given list: 13 30 62 73 81 88 91
Q. Execute your algorithm to convert the infix expression to the post fix expression with the given infix expression as input Q = [(A + B)/(C + D) ↑ (E / F)]+ (G + H)/ I
Abstract data type The thing which makes an abstract data type abstract is that its carrier set and its operations are mathematical entities, like geometric objects or numbers;
I need to know about data structure and algorithms. can you help me?
Methods of Collision Resolution 1) Collision Resolution by separate chaining 2) Collision Resolution by open addressing
HLS Colour Model This model has the double-cone representation shown in Figure 3.40. The three colour parameters in this model are called hue (H), lightness (L), and Saturati
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd