Direction field for the differential equation, Mathematics

Assignment Help:

We require to check the derivative thus let's use v = 60. Plugging it in (2) provides the slope of the tangent line as -1.96, or negative. Thus, for all values of v > 50 we will have negative slopes for the tangent lines. When with v < 50, by looking at (2) we can notice that as v approaches 50, all the times staying greater than 50, the slopes of the tangent lines will approach zero and flatten out. As moving v away by 50 again, staying greater than 50, the slopes of the tangent lines will turn into steeper. We can here add in several arrows for the region above v = 50 as demonstrated in the graph as in following.

1482_direction field for the differential equation.png

This above graph is termed as the direction field for the differential equation.


Related Discussions:- Direction field for the differential equation

Intergration, Functional and variations.Block III, Consider the functiona...

Functional and variations.Block III, Consider the functional S[y]=?_1^2 v(x^2+y'')dx , y(1)=0,y(2)=B Show that if ?=S[y+eg]-S[y], then to second order in e, ?=1/2 e?_1^2¦?g^'

Find the sum of a+b and a-b, Find the sum of a+b, a-b, a-3b, ...... to 22 t...

Find the sum of a+b, a-b, a-3b, ...... to 22 terms. Ans:    a + b, a - b, a - 3b, up to 22 terms d= a - b - a - b = 2b S22 =22/2 [2(a+b)+21(-2b)] 11[2a + 2b - 42b] =

What is congruent angles in parallel lines, What is Congruent Angles in Par...

What is Congruent Angles in Parallel Lines ? Postulate 4.1 (The Parallel Postulate) Through a given point not on a line there is exactly one line parallel to the line. T

Determine the angle, In parallelogram ABCD, m∠A = 3x + 10 and m∠D = 2x + 30...

In parallelogram ABCD, m∠A = 3x + 10 and m∠D = 2x + 30, Determine the m∠A. a. 70° b. 40° c. 86° d. 94° d. Adjacent angles in a parallelogram are supplementary. ∠A a

Numerical analysis and computer techniques, write a fortan programme to gen...

write a fortan programme to generate prime number between 1 to 100

Describe laws of cosines, Q. Describe Laws of Cosines? The law of cosin...

Q. Describe Laws of Cosines? The law of cosines is used to find the missing piece of a triangle if we are given either 1. Two sides and the included angle (SAS) or  2. All t

Partial derivatives, So far we have considered differentiation of functions...

So far we have considered differentiation of functions of one independent variable. In many situations, we come across functions with more than one independent variable

Find the maxima and minima - equal pi, 1) Find the maxima and minima of f(x...

1) Find the maxima and minima of f(x,y,z) = 2x + y -3z subject to the constraint 2x^2+y^2+2z^2=1 2) Compute the work done by the force ?eld F(x,y,z) = x^2I + y j +y k in moving

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd