Diode schematic symbol, Electrical Engineering

Assignment Help:

Diode Schematic Symbol

The diode in figure is a unidirectional device. Electron current just only flows in one direction, against the arrow, corresponding to forward bias. The cathode, bar, of the diode symbol corresponds to N-type semiconductor. The anode, arrow, corresponds to the P-type semiconductor. To memorize this relationship, Not-pointing (bar) on the symbol corresponds to N-type semiconductor. Pointing (arrow) corresponds to P-type.

If a diode is forward biased like in Figure above (a), current will get increase slightly as voltage is increased from 0 V. In the case of a silicon diode a computable current flows while the voltage approaches 0.6 V at (c). As greater the voltage is increases past 0.6 V, current increases significantly after the knee. Raising the voltage well beyond 0.7 V may result in high enough current to destroy the diode. The forward voltage, VF, is a characteristic of the semiconductor: 0.6 to 0.7 V for silicon, 0.2 V for germanium, some volts for Light Emitting Diodes (LED). The forward current ranges from a few mA for point contact diodes to 100 mA for small signal diodes to tens or thousands of amperes for power diodes.

960_Diode Schematic Symbol.png

Figure: (a) Forward biased PN junction, (b) Corresponding diode schematic symbol (c) Silicon Diode I vs V characteristic curve.

Just only the leakage current of the intrinsic semiconductor flows, if the diode is reverse biased. This is planned to the left of the origin in diagram above(c). This current will just only be as high as 1 µA for the most intense conditions for silicon small signal diodes. This current does not increase noticeably with increasing reverse bias until the diode breaks down. At breakdown, the current get increases so significantly that the diode will be destroyed unless a high series resistance limits current. We generally select a diode with a higher reverse voltage rating than as compared to any applied voltage to prevent this. Silicon diodes are commonly available with reverse break down ratings of 50, 100, 200, 400, 800 V and higher. It is probable to fabricate diodes with a lower rating of a few volts for utilize as voltage standards.

We earlier mentioned that the reverse leakage current of within a µA for silicon diodes was because of conduction of the intrinsic semiconductor. This is the leakage which can be described by theory. Thermal energy generates few electron hole pairs that conduct leakage current until recombination. In concrete practice this predictable current is only part of the leakage current. Much of the leakage current is because of surface conduction, related to the lack of cleanliness of the semiconductor surface. Both of the leakage currents increase with growing temperature, approaching a µA for small silicon diodes.

Since the p-type material is now associated to the negative terminal of the power supply, 'holes' within the P-type material are pulled away from the junction, causing the width of the depletion zone to increase. Likewise, because the N-type region is linked to the positive terminal, the electrons will as well be pulled away from the junction. Hence the depletion region widens, and does so much increasingly with increasing reverse-bias voltage. This get increases the voltage barrier causing a high resistance to the flow of charge carriers thus permitting minimal electric current to cross the p-n junction. The increase in resistance of the p-n junction results in the junction to behave like an insulator. This is significant for radiation detection since if current was able to flow; the charged particles would just dissipate into the material. The reverse bias makes sure that charged particles are capable to create it to the detector system.


Related Discussions:- Diode schematic symbol

Define and explain numerical aperture, Define and explain Numerical apertur...

Define and explain Numerical aperture? Figure shown below shows an incident ray to the fibre, The light bends at two interfaces, one at the air- core interface and the

Explain standard set of procedure used in completing a call, Q. Explain Sta...

Q. Explain Standard set of procedure used in Completing a call? Completing a local telephone call between two subscribers linked to the same telephone switch is accomplished th

Show the interconnections and appropriate polarity markings, Q. Two 1150:11...

Q. Two 1150:115-V transformers are to be inter connected for (a) 2300:230-V operation, and (b) 1150:230-V operation. Show the interconnections and appropriate polarity markings.

Rectifier, the forward resisitance of a semi conductor diode is 10 ohm, two...

the forward resisitance of a semi conductor diode is 10 ohm, two such diodes used in full wave rectifier subjectto a sinusoidal voltage wave form. given by v(t)=308 , sin(100 pi t)

Explain fundamentals of load flow analysis, Explain Fundamentals of Load Fl...

Explain Fundamentals of Load Flow Analysis The calculation of electrical power system load flow or current flow is a problem which has no direct solution. It is not that a solu

Differentiate between dual beam and dual trace oscilloscope, Q. How do you ...

Q. How do you differentiate between dual beam and dual trace oscilloscope? Sol. There are two separate vertical input channels A, B and these use separate attenuator and prea

Nand gate - introduction to microprocessors , NAND Gate NAND   means NO...

NAND Gate NAND   means NOT AND  it complements  the output  of an AND  gate. The symbol  of NAND  by a NOT  gate.  Generally Not  operation  is represented by a bubble as shown

Dc simulation component, Once you are happy with the biasing components you...

Once you are happy with the biasing components you will need to disable the DC simulation component and enable the SP component. (Right click the component and then select the "com

Find the total core loss, Q. Ac measurements with constant voltage amplitud...

Q. Ac measurements with constant voltage amplitude reveal that the total core loss of a certain magnetic circuit is 10 W at f = 50 Hz, and 13 Wat f = 60 Hz. Find the total core los

Schematic symbols, Schematic Symbols The junction gate field-effect t...

Schematic Symbols The junction gate field-effect transistor or JFET gate is sometimes drawn in the middle of the channel (in place of at the drain or source electrode as in t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd