Diffrentiation, Mathematics

Assignment Help:

y=f(a^x)   and f(sinx)=lnx find dy/dx?

Solution) dy/dx exist only when 01 as the function y = f(a^x) itself does not exist.


Related Discussions:- Diffrentiation

Relative frequency definition, Relative Frequency  This type of probab...

Relative Frequency  This type of probability requires us to make some qualifications. We define probability of event A, occurring as the proportion of times A occurs, if we re

complex number z, For complex number z, the minimum value of |z| + |z - co...

For complex number z, the minimum value of |z| + |z - cosa - i sina|+|z - 2(cosa + i sina )| is..? Solution) |z| + |z-(e^ia)| + |z-2(e^ia)| we see.....oigin , e^ia , 2e^ia ,  f

Ellipse, alpha and beta are concentric angles of two points A and B on the ...

alpha and beta are concentric angles of two points A and B on the ellipse.

Relations, Suppose A and B be two non-empty sets then every subset of A Χ B...

Suppose A and B be two non-empty sets then every subset of A Χ B describes a relation from A to B and each relation from A to B is subset of AΧB. Normal 0 fals

What is combination formula, Q. What is Combination Formula? Ans. ...

Q. What is Combination Formula? Ans. The difference between combinations and permutations is that permutations take ordering into consideration, whereas combinations do no

Analalitic geometry, 1. Write down the canonical equations of the line pass...

1. Write down the canonical equations of the line passing through the point A(2,3, 4) and being parallel to the vector q ={5,0,-1}.

Two circles touching internally prove that ox:oy=oa:ob, Two circles touchin...

Two circles touching internally at O. OXY, OAB straight lines, the latter passing through the centres. Prove that OX : OY = OA : OB. Given : Two circles touching internally a

Tangents, case 2:when center is not known proof

case 2:when center is not known proof

Definition of logarithms, Q. Definition of Logarithms? Ans. A loga...

Q. Definition of Logarithms? Ans. A logarithm to the base a of a number x is the power to which a is raised to get x. In equation format: If x = a y , then log a  x

3/8/2013 8:23:08 AM

dy/dx = (a^x)(lnx)f''''(a^x), .........(1)

but f(sinx) = lnx implies f(x) = ln(arcsinx)

hence f''''(x) = (1/arcsinx) (1/ ( ( 1-x^2 ) ^ ( !/2 ) ) implies f''''(a^x) = (1/arcsin(a^x)) (1/ ((1-a ^ (2x)) ^ (1/2))) ............(2)

hence from ...(1) &.....(2) the solution is obtained but it should br noted that the given solution exist only when x belongs to (0,1].

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd