Diffrence between rational and irrational numbers, Mathematics

Assignment Help:

Q. Diffrence between Rational and Irrational Numbers?

Ans.

A number which is not rational is called irrational. The word "irrational" sounds not quite right...as though the numbers were "wrong in some way. As a matter of fact, many early mathematicians like Pythagoras were unwilling to accept that such numbers could exist. Nowadays, irrational numbers are accepted as perfectly "proper."

Some examples of irrational numbers are:

• Square roots of whole numbers that aren't perfect squares; for example,

• Decimal numbers that don't repeat or terminate. Some examples of this type of number are Π ≡ 3.14159... and e ≡ 2.71828...

• There are many other examples. In fact, there are "more" irrational numbers than rational numbers.

How do you know when a number is irrational? That can be difficult. If you can write a number as a fraction., then it must be rational, but if you can't write a number as a fraction, then maybe you just haven't thought of the right fraction yet! To know for sure that a number is irrational, you would have to prove that it can't be written as a fraction.


Related Discussions:- Diffrence between rational and irrational numbers

The coordinate axes, Trace the curve y 2 = (x + 2) 2 (x - 6). Clearly sta...

Trace the curve y 2 = (x + 2) 2 (x - 6). Clearly state all the properties you have used for tracing it(e.g., symmetry about the axes, symmetry about the origin, points of interse

Find the instantaneous rate, The time t required to test a computer memor...

The time t required to test a computer memory unit is directly proportional to the square of the number n of memory cells in the unit. For a particular type of unit, n = 6400

Define period, Q. Define Period, Amplitude and Phase Shift? Ans. P...

Q. Define Period, Amplitude and Phase Shift? Ans. Period, amplitude and phase shift are used when describing a sinusoidal curve The period of a function is the smallest

Step functions, Before going to solving differential equations we must see ...

Before going to solving differential equations we must see one more function. Without Laplace transforms this would be much more hard to solve differential equations which involve

Explain adding negative fraction, Explain Adding Negative Fraction? To...

Explain Adding Negative Fraction? To add negative fractions: 1. Find a common denominator. 2. Change the fractions to their equivalents, so that they have common denominators

Interpretation of r – problems in interpreting r values, Interpretation of ...

Interpretation of r - Problems in interpreting r values A high value of r as +0.9 or - 0.9 only shows a strong association among the two variables but doesn't imply that th

Compute the probability of event, 1) Let the Sample Space S = {1, 2, 3, 4, ...

1) Let the Sample Space S = {1, 2, 3, 4, 5, 6, 7, 8}. Suppose each outcome is equally likely. Compute the probability of event E = "an even number is selected". P(E) = 2) A s

Calculas, how to deal with integration by parts

how to deal with integration by parts

The equation of the tangent, Consider the function f(x) = 2x 2 + 1. Find ...

Consider the function f(x) = 2x 2 + 1. Find the equation of the tangent to the graph of f(x) at x = 2. [NOTE: when calculating f'(2), use first principles.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd