Diffrence between rational and irrational numbers, Mathematics

Assignment Help:

Q. Diffrence between Rational and Irrational Numbers?

Ans.

A number which is not rational is called irrational. The word "irrational" sounds not quite right...as though the numbers were "wrong in some way. As a matter of fact, many early mathematicians like Pythagoras were unwilling to accept that such numbers could exist. Nowadays, irrational numbers are accepted as perfectly "proper."

Some examples of irrational numbers are:

• Square roots of whole numbers that aren't perfect squares; for example,

• Decimal numbers that don't repeat or terminate. Some examples of this type of number are Π ≡ 3.14159... and e ≡ 2.71828...

• There are many other examples. In fact, there are "more" irrational numbers than rational numbers.

How do you know when a number is irrational? That can be difficult. If you can write a number as a fraction., then it must be rational, but if you can't write a number as a fraction, then maybe you just haven't thought of the right fraction yet! To know for sure that a number is irrational, you would have to prove that it can't be written as a fraction.


Related Discussions:- Diffrence between rational and irrational numbers

Solve the subsequent lp problem, Solve the subsequent LP problem graphicall...

Solve the subsequent LP problem graphically through enumerating the corner points. MAX:              3X1 + 4X2 Subject to:    X1   12                     X2    10

Area with polar coordinates - parametric equations, Area with Polar Coordin...

Area with Polar Coordinates In this part we are going to look at areas enclosed via polar curves.  Note also that we said "enclosed by" in place of "under" as we usually have

Coefficient of correlation denoted, Coefficient of Correlation Denoted ...

Coefficient of Correlation Denoted There are two methods which measure the degree of correlation among two variables these are denoted by R and r. (a) Coefficient of correl

Proof of various limit properties, PROOF OF VARIOUS LIMIT PROPERTIES In...

PROOF OF VARIOUS LIMIT PROPERTIES In this section we are going to prove several of the fundamental facts and properties about limits which we saw previously. Before proceeding

Conjugate of the complex number, The conjugate of the complex number a + b ...

The conjugate of the complex number a + b i is the complex number a - b i .  In other terms, it is the original complex number along the sign on the imaginary part changed.  Here

Is this a sample statistic.., jenna asked 100 of her schoolmates if they ha...

jenna asked 100 of her schoolmates if they have had their first kiss and 43 of them said yes

Modeling , A plastic manufacturer has 1200 boxes of transparent wrap in sto...

A plastic manufacturer has 1200 boxes of transparent wrap in stock at one factory and 1000 boxes at his second factory.The manufacturer has order for this product from 3 different

Statistical models in simulation, Players and spectators enter a ballpark a...

Players and spectators enter a ballpark according to independent Poisson processes having respective rates 5 and 20 per hour. Starting at an arbitrary time, compute the probability

Relative measures of dispersion, Relative measures of dispersion Defi...

Relative measures of dispersion Definition of Relative measures of dispersion: A relative measure of dispersion is a statistical value that may be utilized to compare va

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd