Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Diffrence between Rational and Irrational Numbers?
Ans.
A number which is not rational is called irrational. The word "irrational" sounds not quite right...as though the numbers were "wrong in some way. As a matter of fact, many early mathematicians like Pythagoras were unwilling to accept that such numbers could exist. Nowadays, irrational numbers are accepted as perfectly "proper."
Some examples of irrational numbers are:
• Square roots of whole numbers that aren't perfect squares; for example,
• Decimal numbers that don't repeat or terminate. Some examples of this type of number are Π ≡ 3.14159... and e ≡ 2.71828...
• There are many other examples. In fact, there are "more" irrational numbers than rational numbers.
How do you know when a number is irrational? That can be difficult. If you can write a number as a fraction., then it must be rational, but if you can't write a number as a fraction, then maybe you just haven't thought of the right fraction yet! To know for sure that a number is irrational, you would have to prove that it can't be written as a fraction.
1) Find the maxima and minima of f(x,y,z) = 2x + y -3z subject to the constraint 2x^2+y^2+2z^2=1 2) Compute the work done by the force ?eld F(x,y,z) = x^2I + y j +y k in moving
Cathy is forming a quilt out of fabric panels that are 6 in through 6 in. She needs to know the total area of her square-shaped quilt. Which formula will she use? The area of a
Need a problem solved
1/(1-z)(1-z)(1-z)(1-z)
In this case, the first point we have to remember is that we do not get a single value when we add two or more terms which are unlike in nature. This certainly ob
Example: If c ≠ 0 , evaluate the subsequent integral. Solution Remember that you require converting improper integrals to limits as given, Here, do the integ
need answer to integers that equal 36
ABC is a right-angled isosceles triangle, right-angled at B. AP, the bisector of ∠BAC, intersects BC at P. Prove that AC 2 = AP 2 + 2(1+√2)BP 2 Ans: AC = √2AB (Sinc
1. Consider the code of size 4 (4 codewords) and of length 10 with codewords listed below. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1
ion..
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd