Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Diffrence between Rational and Irrational Numbers?
Ans.
A number which is not rational is called irrational. The word "irrational" sounds not quite right...as though the numbers were "wrong in some way. As a matter of fact, many early mathematicians like Pythagoras were unwilling to accept that such numbers could exist. Nowadays, irrational numbers are accepted as perfectly "proper."
Some examples of irrational numbers are:
• Square roots of whole numbers that aren't perfect squares; for example,
• Decimal numbers that don't repeat or terminate. Some examples of this type of number are Π ≡ 3.14159... and e ≡ 2.71828...
• There are many other examples. In fact, there are "more" irrational numbers than rational numbers.
How do you know when a number is irrational? That can be difficult. If you can write a number as a fraction., then it must be rational, but if you can't write a number as a fraction, then maybe you just haven't thought of the right fraction yet! To know for sure that a number is irrational, you would have to prove that it can't be written as a fraction.
Numerical analysis university
Descriptive Statistics Statistics Definition of Statistics: it viewed as a subject is a process of tabulating, collecting and analyzing numerical data upon which importan
Decision-Making Under Conditions of Certainty Conditions of certainty tend to be rare, especially when significant decisions are involved. Under conditions of certainty, decis
Consider an election with 721 voters. A) If there are 5 candidates, at least x votes are needed to have a plurality of the votes. Find x. B) Suppose that at least 73 votes are n
1. Consider the trigonometric function f(t) = (a) What is the amplitude of f(t)? (b) What is the period of f(t)? (c) What are the maximum and minimum values attained by
Two angles are supplementary. The evaluate of one is 30 more than twice the measure of the other. Determine the measure of the larger angle. a. 130° b. 20° c. 50° d. 70
Multiply following. (a) (4x 2 -x)(6-3x) (b) (2x+6) 2 Solution (a) (4x 2 - x )(6 - 3x ) Again we will only FOIL this one out. (4x 2 - x )(6 - 3x) = 24x 2 -
3 2/3 - 1/6
(a) Specify that the sum of the degrees of all vertices of a graph is double the number of edges in the graph. (b) Let G be a non directed gra
sir kindly guide me in 1st order linear equations.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd