Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Differentiate y = x x
Solution : We've illustrated two functions similar to this at this point.
d ( xn ) /dx = nxn -1 d (a x ) /dx= a x ln a
Neither of these two can imply here since both need either the base or the exponent to be a constant. In this case the base and the exponent both are variables and thus we have no way to differentiate this function by using only known rules from earlier sections.
However, with logarithmic differentiation we can do this. First take logarithm of both sides and utilize the logarithm properties to simplify things a little.
ln y = ln x x
ln y = x ln x
Differentiate both sides by using implicit differentiation.
y′ / y = ln x + x ( 1 /x)= ln x + 1
As along the first example multiply through y & substitute back in for y.
y′ = y (1 + ln x )
= x x (1 + ln x )
We'll close this section out with a quick recap of all the various ways we've seen of differentiating functions along with exponents. It is significant to not get all of these confused.
Identify the flaw in the following argument which supposedly determines that n 2 is even when n is an even integer. As well name the reasoning: Assume that n 2 is
the low temperature in anchorage alaska today was negative four degrees what is the difference in the two low temperatures
i dont understand it can you help
1. Show that there do not exist integers x and y for which 110x + 315y = 12. 2. If a and b are odd integers, prove that a 2 +b 2 is divisible by 2 but is NOT divisible by 4. H
what is a domain of a function?
Thorwarth M., Arisha, A. and Harper P., (2009) Simulation model to investigate flexible workload management for healthcare and servicescape environment, Proceedings of the 2009 Win
marks frequency 0-9 8 10-19 10 20-29 14 30-39 28 40-49 46 50-59 25 60-69 17 70-79 9 80-89 2 90-99 1 (
The Shape of a Graph, Part I : In the earlier section we saw how to employ the derivative to finds out the absolute minimum & maximum values of a function. Though, there is many
Interpretation of r - Problems in interpreting r values A high value of r as +0.9 or - 0.9 only shows a strong association among the two variables but doesn't imply that th
Q) In 3D-geometry give + and - signs for x,y,z, in all eight octants Ans) There is no specific hard rule for numbering the octants. So, it makes no real sense to ask which octan
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd