Differentiate y = x x using implicit differentiation, Mathematics

Assignment Help:

Differentiate y = x x

Solution : We've illustrated two functions similar to this at this point.

d ( xn ) /dx = nxn -1                                d (a x ) /dx= a x ln a

Neither of these two can imply here since both need either the base or the exponent to be a constant.  In this case the base and the exponent both are variables and thus we have no way to differentiate this function by using only known rules from earlier sections.

However, with logarithmic differentiation we can do this.  First take logarithm of both sides and utilize the logarithm properties to simplify things a little.

ln y = ln x x

ln y = x ln x

Differentiate both sides by using implicit differentiation.

                               y′ / y = ln x + x ( 1 /x)= ln x + 1

As along the first example multiply through y & substitute back in for y.

y′ = y (1 + ln x )

= x x (1 + ln x )

We'll close this section out with a quick recap of all the various ways we've seen of differentiating functions along with exponents.  It is significant to not get all of these confused.


Related Discussions:- Differentiate y = x x using implicit differentiation

Square and square root., the value of square root of 200multiplied by squar...

the value of square root of 200multiplied by square root of 5+

Algebra 1, Im having trouble with this word problem: The three Math Idol j...

Im having trouble with this word problem: The three Math Idol judges have been eliminating contestants all day! The number of one-step equations and two-step equations who have be

Prisoners dilemma, Prisoners Dilemma This is a type of non-zero sum gam...

Prisoners Dilemma This is a type of non-zero sum game and derives its name from the given story: The district attorney has two bank robbers in separate cells and offers them

Value delivery, What do you mean by value delivery

What do you mean by value delivery

Prove asymptotic bounds for recursion relations, 1. (‡) Prove asymptotic b...

1. (‡) Prove asymptotic bounds for the following recursion relations. Tighter bounds will receive more marks. You may use the Master Theorem if it applies. 1. C(n) = 3C(n/2) + n

Rolles therom, f(x)=sin x+cos x in the interval {0,90}

f(x)=sin x+cos x in the interval {0,90}

Determine differential equation from direction field, Thus, just why do we ...

Thus, just why do we care regarding direction fields? Two nice pieces of information are there which can be readily determined from the direction field for a differential equation.

Congruences, Suppose m be a positive integer, then the two integer a and b ...

Suppose m be a positive integer, then the two integer a and b called congurent modulo m ' if a - b is divisible by m i.e.  a - b = m where is an positive integer. The congru

Trignometric function, If tanx+secx=sqr rt 3, 0 Ans) sec 2 x=(√3-tanx) 2...

If tanx+secx=sqr rt 3, 0 Ans) sec 2 x=(√3-tanx) 2 1+tan 2 x=3+tan 2 x-2√3tanx 2√3tanx=2 tanx=1/√3 x=30degree

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd