Differentiate y = x x using implicit differentiation, Mathematics

Assignment Help:

Differentiate y = x x

Solution : We've illustrated two functions similar to this at this point.

d ( xn ) /dx = nxn -1                                d (a x ) /dx= a x ln a

Neither of these two can imply here since both need either the base or the exponent to be a constant.  In this case the base and the exponent both are variables and thus we have no way to differentiate this function by using only known rules from earlier sections.

However, with logarithmic differentiation we can do this.  First take logarithm of both sides and utilize the logarithm properties to simplify things a little.

ln y = ln x x

ln y = x ln x

Differentiate both sides by using implicit differentiation.

                               y′ / y = ln x + x ( 1 /x)= ln x + 1

As along the first example multiply through y & substitute back in for y.

y′ = y (1 + ln x )

= x x (1 + ln x )

We'll close this section out with a quick recap of all the various ways we've seen of differentiating functions along with exponents.  It is significant to not get all of these confused.


Related Discussions:- Differentiate y = x x using implicit differentiation

Real numbers on every line, Make a file called "testtan.dat" which has 2 li...

Make a file called "testtan.dat" which has 2 lines, with 3 real numbers on every line (some negative, some positive, in the range from-1 to 3).  The file can be formed from the edi

Local maxima, Given that f(x,y) = 3xy -  x 2 y  - xy 2 . Fi nd all the poin...

Given that f(x,y) = 3xy -  x 2 y  - xy 2 . Fi nd all the points on the surface z = f(x, y)where local maxima, local minima, or saddles occur

Find the area of section a, The picture frame given below has outer dimensi...

The picture frame given below has outer dimensions of 8 in by 10 in and inner dimensions of 6 in by 8 in. Find the area of section A of the frame. a. 18 in 2 b. 14 in 2

Optimization, Optimization : In this section we will learn optimization p...

Optimization : In this section we will learn optimization problems.  In optimization problems we will see for the largest value or the smallest value which a function can take.

Geometry, the segments shown could form a triangle

the segments shown could form a triangle

Surface area- applications of integrals, Surface Area- Applications of inte...

Surface Area- Applications of integrals In this part we are going to look again at solids of revolution. We very firstly looked at them back in Calculus I while we found the

Forced - damped vibrations, It is the full blown case where we consider eve...

It is the full blown case where we consider every final possible force which can act on the system. The differential equation in this case, Mu'' + γu'  + ku = F( t) The displ

Introduction to multiplication and division, INTRODUCTION :  When a Class ...

INTRODUCTION :  When a Class 5 child was given the problem 'If I paid Rs. 60 for 30 pencil boxes, how much did b pencil box cost?', he said it would be 60 x 30 = 1800. This

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd