Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Differentiate y = x x
Solution : We've illustrated two functions similar to this at this point.
d ( xn ) /dx = nxn -1 d (a x ) /dx= a x ln a
Neither of these two can imply here since both need either the base or the exponent to be a constant. In this case the base and the exponent both are variables and thus we have no way to differentiate this function by using only known rules from earlier sections.
However, with logarithmic differentiation we can do this. First take logarithm of both sides and utilize the logarithm properties to simplify things a little.
ln y = ln x x
ln y = x ln x
Differentiate both sides by using implicit differentiation.
y′ / y = ln x + x ( 1 /x)= ln x + 1
As along the first example multiply through y & substitute back in for y.
y′ = y (1 + ln x )
= x x (1 + ln x )
We'll close this section out with a quick recap of all the various ways we've seen of differentiating functions along with exponents. It is significant to not get all of these confused.
I need marketing management sample assignment as a guide
please suggest me that how can i get the term papers topics?
The Limit : In the earlier section we looked at some problems & in both problems we had a function (slope in the tangent problem case & average rate of change in the rate of chan
f(x)+f(x+1/2) =1 f(x)=1-f(x+1/2) 0∫2f(x)dx=0∫21-f(x+1/2)dx 0∫2f(x)dx=2-0∫2f(x+1/2)dx take (x+1/2)=v dx=dv 0∫2f(v)dv=2-0∫2f(v)dv 2(0∫2f(v)dv)=2 0∫2f(v)dv=1 0∫2f(x)dx=1
scope of operation research and its limitations
tan9x = (tan7x + tan2x)/(1 - tan7x*tan2x) here its given 1 - tan2x*tan7x= 0 implies tan9x = infinity since tan9x = (3tan3x - tan^3(3x))/(1 - 3tan^2 (3x)) = infinity implies
when is the trnscribing process of data preparation irrelevant ? a)CAPI b) mall panel c) in home interview d) all of them
Rates of Change and Tangent Lines : In this section we will study two fairly important problems in the study of calculus. There are two cause for looking at these problems now.
Area between Two Curves We'll start with the formula for finding the area among y = f(x) and y = g(x) on the interval [a,b]. We will also suppose that f(x) ≥ g(x) on [a,b].
how to convert double integral into polar coordinates and change the limits of integration
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd