Differentiate y = x x using implicit differentiation, Mathematics

Assignment Help:

Differentiate y = x x

Solution : We've illustrated two functions similar to this at this point.

d ( xn ) /dx = nxn -1                                d (a x ) /dx= a x ln a

Neither of these two can imply here since both need either the base or the exponent to be a constant.  In this case the base and the exponent both are variables and thus we have no way to differentiate this function by using only known rules from earlier sections.

However, with logarithmic differentiation we can do this.  First take logarithm of both sides and utilize the logarithm properties to simplify things a little.

ln y = ln x x

ln y = x ln x

Differentiate both sides by using implicit differentiation.

                               y′ / y = ln x + x ( 1 /x)= ln x + 1

As along the first example multiply through y & substitute back in for y.

y′ = y (1 + ln x )

= x x (1 + ln x )

We'll close this section out with a quick recap of all the various ways we've seen of differentiating functions along with exponents.  It is significant to not get all of these confused.


Related Discussions:- Differentiate y = x x using implicit differentiation

Construction, draw a line OX=10CM and construct an angle xoy = 60. (b)bisec...

draw a line OX=10CM and construct an angle xoy = 60. (b)bisect the angle xoy and mark a point A on the bisector so that OA = 7cm

VECTOR, the sum of the vector QR, -SR, TQ and 2ST is?

the sum of the vector QR, -SR, TQ and 2ST is?

Shares and dividend, a man in rested rupee 800 is buying rupee 5 shares and...

a man in rested rupee 800 is buying rupee 5 shares and then are selling at premium of rupee 1.15. He sells all the shares.find profit

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Theory of quadratic equations.., solve the following simultaneous equations...

solve the following simultaneous equations x+y=a+b ; a/x_b/y

Mechanical vibrations, This time we are going to take a look at an applicat...

This time we are going to take a look at an application of second order differential equations. It's now time take a look at mechanical vibrations. In exactly we are going to look

Integrate even or odd function, Integrate following. ∫ -2   2 4x 4 - ...

Integrate following. ∫ -2   2 4x 4 - x 2   + 1dx Solution In this case the integrand is even & the interval is accurate so, ∫ -2   2 4x 4 - x 2   + 1dx = 2∫ o

Revenue and profit functions, Now let's move onto the revenue & profit func...

Now let's move onto the revenue & profit functions. Demand function or the price function Firstly, let's assume that the price which some item can be sold at if there is

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd