Differentiate product rule functions, Mathematics

Assignment Help:

Differentiate following functions.

1348_product rules.png

Solution

At this point there in fact isn't a lot of cause to use the product rule. 

We will utilize the product rule.  As we add up more functions to our repertoire and as the functions become more complexes the product rule will become more useful and in several cases required.

Note as well that we took the derivative of this function in the previous section and didn't use the product rule at that point.  However, we have to get the same result here as we did then.

By converting the radical to a fractional exponent as always, we get.

                                                y = x 2/3 (2 x - x2 )

Now let's take the derivative.  Hence we take the derivative of the first function times the second then add up on to that the first function times the derivative of the second function.

                                         y′ = (2/3) x -1/3 (2 x - x2 ) + x 2/3 ( 2 - 2 x )

                          y′ =(4/3)x(2/3)-(2/3) x(5/3) +2x (2/3) -2x (5/3) =(10/3) x(2/3) -(8/3)x(5/3)


Related Discussions:- Differentiate product rule functions

Find the area of the shaded region of square, In the adjoining figure, ABCD...

In the adjoining figure, ABCD is a square of side 6cm.  Find the area of the shaded region. Ans:    From P draw PQ ⊥ AB AQ = QB = 3cm (Ans: 34.428 sq cm) Join PB

Inside function and outside function, "Inside function" and "outside functi...

"Inside function" and "outside function : Generally we don't actually do all the composition stuff in using the Chain Rule. That can get little complexes and actually obscures the

The stoichiometric reaction, Prove that a reaction following the rate law v...

Prove that a reaction following the rate law v = k[A] 2 is characterized by a linear plot of [P] t 1 versus t-l, where P is the product of the stoichiometric reaction A = P. Sho

What is the area covered through the motion of the fan, The arm of a ceilin...

The arm of a ceiling fan measures a length of 25 in. What is the area covered through the motion of the fan blades while turned on? (π = 3.14) The ceiling fan follows a circula

Inverse functions, We have seen that if y is a function of x, then fo...

We have seen that if y is a function of x, then for each given value of x, we can determine uniquely the value of y as per the functional relationship. For some f

High dimensions, List the five most important things you learned about high...

List the five most important things you learned about high dimensions.

Logarithmic functions- general properties, Logarithmic functi...

Logarithmic functions have the following general properties If y = log a x, a > 0 and a ≠1, then The domain of the function

Separable differential equations, We are here going to begin looking at non...

We are here going to begin looking at nonlinear first order differential equations. The first type of nonlinear first order differential equations which we will see is separable di

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd