Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Differentiate following functions.
Solution
At this point there in fact isn't a lot of cause to use the product rule.
We will utilize the product rule. As we add up more functions to our repertoire and as the functions become more complexes the product rule will become more useful and in several cases required.
Note as well that we took the derivative of this function in the previous section and didn't use the product rule at that point. However, we have to get the same result here as we did then.
By converting the radical to a fractional exponent as always, we get.
y = x 2/3 (2 x - x2 )
Now let's take the derivative. Hence we take the derivative of the first function times the second then add up on to that the first function times the derivative of the second function.
y′ = (2/3) x -1/3 (2 x - x2 ) + x 2/3 ( 2 - 2 x )
y′ =(4/3)x(2/3)-(2/3) x(5/3) +2x (2/3) -2x (5/3) =(10/3) x(2/3) -(8/3)x(5/3)
A real estate agent makes a 1.5% commission on her sales. What is her commission if she sells a $359,000 house? Multiply $359,000 by the decimal equivalent of 1.5% (0.015) to ?
i don''t understand how
conclusion onoshares and dividends
Does the Angle-Side Relationship Theorm work for all triangles or just a certain type of triangle? Does is correspond with the orthocenter of a triangle?
how do you differentiate sinx/ex?
A computer is programmed to scan the digits of the counting numbers.For example,if it scans 1 2 3 4 5 6 7 8 9 10 11 12 13 then it has scanned 17 digits all together. If the comput
Evaluate following integrals. (a) ∫ 3e x + 5 cos x -10 sec 2 x dx (b) ( 23/ (y 2 + 1) + 6 csc y cot y + 9/ y dy Solution (a) ∫ 3e x + 5 cos x -10 sec 2 x
find the temperature at which the celsius and farhenheit temperatures are numerically equl
3456+3694
Integration by Parts -Integration Techniques Let's start off along with this section with a couple of integrals that we should previously be able to do to get us started. Fir
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd