Differentiate between accuracy and precision, Electrical Engineering

Assignment Help:

Q. With suitable example differentiate between accuracy and precision.

 Sol. Accuracy :  Accuracy is the closeness with which instrument reading approaches the true value of the particular quantity to be measured, that is, accuracy of a measurement means conformity to truth. The accuracy of an instrument is measured in terms of its errors. The most important characteristic of an instrument or measurement system is its accuracy. It is generally expressed as a percentage of either true value or full scale value.

     Mathematically, accuracy on the basis of true value, Vt  is given by:

Accuracy =

 

Accuracy =

 

Where Vmax  and Vmin are the maximum or minimum final reading or results obtained after applying all the known corrections to all the various indicated readings and Vis the true (actual) magnitude of input.

Accuracy of a measurement means conformity to truth.

Precision: Precision refers to the degree of agreement within a group of various measurement or readings of the same parameter of variable.

As seen above, accuracy and precision have totally distinct meanings. Let us illustrate this using following examples:

1.   Consider an instrumentation system where the temperature of boiling water at 100?c is being measured using a thermometer. Suppose that four reading are taken using the same thermometer and they are : 100.4?c, 100.3?c, 100.5?c and 100.3?c

2.   Consider the case of two voltmeter 'A' and 'B' measuring the voltage at the same point with respect to ground. Assure that the true value of voltage is 50 V while the two voltmeters indicate the values as shown below when four consecutive reading are taken.

No. or Readings

Voltmeter 'A'

Voltmeter 'B'

Voltmeter 'C'

1.                            50V                       48.5V                                 50.1V

2.                            50.2                      48.5V                                 50.1V

3.                            48.8V                    48.5V                              50.80V

4.                            50.1V                    48.52V                             50.1V

 

It is clear from above that voltmeter 'A' reads very close to the true value of 50 V. However, there is an agreement between the four readings.

On the other hand, voltmeter 'B's' reading are not very close to true value of 50 V. But all the values are very close to each other or same. We can conclude from above that voltmeter 'A' is fairly accurate  but not precise while voltmeter 'B' is not accurate and precise.

If we consider of third voltmeter 'C' which reads 50.1, 50.1, 50.80, 50.1 for the same true value of 50 V, then we can say that voltmeter C is both accurate and precies.

Sensitivity : The sensitivity of the instrument is the ratio of the change in output (response) of  the instrument to the change of input or measured variable.

It denotes the smallest change in the value of a measured variable to which instrument responds. Sensitivity is an important property of the instrument which is determined by design. The numerical value of the sensitivity is influenced by the requirement of instrument application. The choice will be decide by the smallest subdivision desired by the conditions of the test treatment.

Sensitivity and responsiveness are frequently confused, as in speaking of thermometer which is sensitive to 0.1 °c. In accordance with the definition of the two terms, it is correct to say that the thermometer will respond to a change in ± 0.1°c.


Related Discussions:- Differentiate between accuracy and precision

Illustrates power dissipation management in embedded system, Illustrates ab...

Illustrates about the power dissipation management in embedded system? Power Dissipation Management a. Clever real-time programming through Wait and Stop instructions b.

Pulsed OFDM odulation for ultrawideband communication, i have selected this...

i have selected this paper as my semester project according to teacher we have to fully implement it. i need its full written matlab code simulink model and results. can you help m

Evaluate the diode current id, Question: (a) The piecewise linear appro...

Question: (a) The piecewise linear approximation given in Figure is assumed for the diode in the circuit shown in Figure. Evaluate the diode current ID. (b) The piecew

2365 - 305 task a, List four sources of information which are essential to ...

List four sources of information which are essential to the designer of this electrical installation.

Find the total current and total resistance, For the circuit in figure, fin...

For the circuit in figure, find: a)  Total resistance b)  Total current c)  Current flow through resistor 6Ω and 4Ω

Band Pass active filter, How to design band pass active filer? Any software...

How to design band pass active filer? Any software avaialble

D/a converter, weighted resistor and r2r ladder d/a converter

weighted resistor and r2r ladder d/a converter

Find the efficiency of the transformer, Q. Athree-phase, 600-kVA, 2300:230-...

Q. Athree-phase, 600-kVA, 2300:230-V,Y-Ytrans- former bank has an iron loss of 4400 W and a full- load copper loss of 7600 W. Find the efficiency of the transformer for 70% full lo

Armature winding, what is use of dummy coil in DC m/c????

what is use of dummy coil in DC m/c????

Relationship between the induced e.m.f and the network, Mathematical relati...

Mathematical relationship between the induced e.m.f and the network Faraday noted that the e.m.f induced in a loop is proportional to the rate of change of magnetic flux by it:

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd