Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

Math, The Timbuktu post office has only 3 cents and 7 cents stamps having r...

The Timbuktu post office has only 3 cents and 7 cents stamps having run out of all other denominations. What are the six amounts of postage that cannot be created? How do you know

Quardrilatrel, construct aquadrilaterl PQRSin which pq=3.5cm qr=6.5cm ,p=60...

construct aquadrilaterl PQRSin which pq=3.5cm qr=6.5cm ,p=60 ,q=105 ,s=75

Prerequisite, Is prerequisite multipcation or addition

Is prerequisite multipcation or addition

Subtangents & subnormals, show that the subtangent at any point on parabola...

show that the subtangent at any point on parabola y2 =4ax is twice the abscissa at that point.

Quadratic equation, find a quadratic equation whose roots are q+1/2 and 2p-...

find a quadratic equation whose roots are q+1/2 and 2p-1 with p+q=1

Pendulum swings, how many pendulum swings will it take to walk across the c...

how many pendulum swings will it take to walk across the classroom

Ellipse, different types of ellipse

different types of ellipse

Solve the linear equation, Solve the linear equation: The equation rel...

Solve the linear equation: The equation relating the pressure that is denoted by P, to the force, F & the area, A, over which the force is applied is P =F/A.  Solve this equat

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd