Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

MUTIPLYING FRACTIONS, EVERY TIME I TRY TO DO ANY KIND OF FRACTIONS WELL MUL...

EVERY TIME I TRY TO DO ANY KIND OF FRACTIONS WELL MULTIPLYING I ALWAYS GET IT WRONG

Toplogy, Let 0 ! V1 !    ! Vk ! 0 be a long exact sequence of vector spa...

Let 0 ! V1 !    ! Vk ! 0 be a long exact sequence of vector spaces with linear maps. Show that P (??1)i dim Vi = 0.

Recursively, Let a 0 , a 1 ::: be the series recursively defined by a 0 =...

Let a 0 , a 1 ::: be the series recursively defined by a 0 = 1, and an = 3 + a n-1 for n ≥ 1. (a) Compute a 1 , a 2 , a 3 and a 4 . (b) Compute a formula for an, n ≥ 0.

Working definition of function, A function is an equation for which any x w...

A function is an equation for which any x which can be plugged into the equation will yield accurately one y out of the equation. There it is. i.e. the definition of functions w

Java program for sorting algorithms, Introduction: In this project, yo...

Introduction: In this project, you will explore a few sorting algorithms. You will also test their efficiency by both timing how long a given sorting operation takes and count

Decmiels, how do you re name percents to decimal

how do you re name percents to decimal

State demorgans law and prove it using the truth table, State DeMorgan's la...

State DeMorgan's law. Prove it using the truth table.   Ans: DeMorgan's law defines that    (i)  (x ∨ y)' = x' ∧ y' (ii)  (x ∧ y)' = x' ∨ y'      Now let us dr

Integral calculus, how to change order and variable in multiple integral

how to change order and variable in multiple integral

Methods of set representation, I have an assignment of set theory, please E...

I have an assignment of set theory, please Explain Methods of set representation.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd