Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

Apply depth-first-search to find out the spanning tree, Apply depth-first-s...

Apply depth-first-search to find out the spanning tree for the subsequent graph with vertex d as the starting vertex.        Ans: Let us begin with node'd'. Mark d as vi

Simultaneous equations, two rolls of carpet cost £574, the first cost £8 pe...

two rolls of carpet cost £574, the first cost £8 per meter, the second which is 7m longer costs £7 p/m. how many meters are there in each roll

Systems of differential equations, In the introduction of this section we b...

In the introduction of this section we briefly talked how a system of differential equations can occur from a population problem wherein we remain track of the population of both t

Definition of natural exponential function, Definition of Natural exponenti...

Definition of Natural exponential function:   The natural exponential function is f( x ) = e x   where, e= 2.71828182845905........ . Hence, since e > 1 we also know that e x

Find out height of the box which will give maximum volume, We contain a pie...

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. F

Compound interest, Draw a flowchart for accumulated principal at the end of...

Draw a flowchart for accumulated principal at the end of 5 years by taking into account compound interest?

Parallelograns, Find x and y in each paarallelogram.

Find x and y in each paarallelogram.

Equations of lines - three dimensional spaces, Equations of Lines In t...

Equations of Lines In this part we need to take a view at the equation of a line in R 3 .  As we saw in the earlier section the equation y = mx+b does not explain a line in R

Cycloid - parametric equations and polar coordinates, Cycloid The param...

Cycloid The parametric curve that is without the limits is known as a cycloid.  In its general form the cycloid is, X = r (θ - sin θ) Y = r (1- cos θ)  The cycloid pre

Calculus level 2, the first question should be done using the website given...

the first question should be done using the website given (www.desmos.com/calculator )and another good example to explain using the graph ( https://www.desmos.com/calculator/ydimzr

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd