Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

Compute the linear convolution, Compute the linear convolution of the discr...

Compute the linear convolution of the discrete-time signal x(n) ={3, 2, 2,1} and the impulse response function of a filter h(n) = {2, 1, 3} using the DFT and the IDFT.

Determine the slope, Determine the slope following lines.  Sketch the graph...

Determine the slope following lines.  Sketch the graph of line.       The line which contains the two points (-2, -3) and (3, 1) .   Solution we'll need to do is employ

NUMERABILITY, AFIGURE THIS OUT(3) (14) (17) (20) (25)= 8 WHAT ARE THE PROC...

AFIGURE THIS OUT(3) (14) (17) (20) (25)= 8 WHAT ARE THE PROCEDURES (-)(+)(x)(div) BETWEEN EACH NUMBER TO COME UP WITH 8 ?

Strategy -game theory, STRATEGY It refers to a total pattern of cho...

STRATEGY It refers to a total pattern of choices employed by any player. Strategy could be pure or a mixed one In a pure strategy, player X will play one row all of the

Arc length and surface area revisited, Arc Length and Surface Area Revisite...

Arc Length and Surface Area Revisited We won't be working any instances in this part.  This section is here exclusively for the aim of summarizing up all the arc length and su

Times fractons, In a garden, 1/8 of the flowers are tulips. 1/4 of the tuli...

In a garden, 1/8 of the flowers are tulips. 1/4 of the tulips are red. What fraction of the flowers in the garden are red tulips?

Trigonomitry, Ask if tanA+sinA=m and m^2-n^2=4 rute mn show that tanA-sinA=...

Ask if tanA+sinA=m and m^2-n^2=4 rute mn show that tanA-sinA=n

Caselets, how are indian customers visiting shoppers stop any different fro...

how are indian customers visiting shoppers stop any different from customers of developed western countries

integral 0 to pi e^cosx cos (sinx) dx, Let u = sin(x). Then du = cos(x) dx...

Let u = sin(x). Then du = cos(x) dx. So you can now antidifferentiate e^u du. This is e^u + C = e^sin(x) + C.  Then substitute your range 0 to pi. e^sin (pi)-e^sin(0) =0-0 =0

Matrices, Ask qudefination of empty matrixestion #Minimum 100 words accepte...

Ask qudefination of empty matrixestion #Minimum 100 words accepted#

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd