Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

Tchebecheffs ineqality theorom, what are the advantages and disadvantages o...

what are the advantages and disadvantages of tchebycheffs inequality theorem

Personal assistance needed, I have an original finding on the subject of pr...

I have an original finding on the subject of prime distribution and would like expert help in my endeavors. I have written a paper describing everything in detail and demonstration

Define a*b for given matrix, Define A*B where:                A =  | 3 -...

Define A*B where:                A =  | 3 -3  6 |          B = |  6   1 |                          | 0  4  2 |              |  0  -5 |

Sequences, what is the answer to 2.1 to 4.2

what is the answer to 2.1 to 4.2

Marketing mix, 1) Identify key characteristics of product or services and e...

1) Identify key characteristics of product or services and estimate their significance to the market 2) Identify and analyse level of customer service provision to determine its si

Maths Assessment, Assessment task This Term Assessment will require you ass...

Assessment task This Term Assessment will require you assess the effectiveness of your current lunch budget and prepare a proposal to your caregiver to seek permission to be given

Laws of indicies in fraction.., help to solve the laws of indicies chapter ...

help to solve the laws of indicies chapter 9c book 3 high school example19to the power3_2 what is answer

How many days are there in a year, There are m months in a year, w weeks wi...

There are m months in a year, w weeks within a month and d days in a week. How many days are there in a year? In this problem, multiply d and w to obtain the total days in one

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd