Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

Solving whole-number riddles, I am greater than 30 and less than 40. The su...

I am greater than 30 and less than 40. The sum of my digits is less than 5. who am I?

General rule - probability rule, GENERAL RULE A general rule is to sub...

GENERAL RULE A general rule is to subtract the probabilities with an even number of components inside the parentheses and add those with an odd number of components (one or th

Quadratic equation whose roots are real, Write the quadratic equation whose...

Write the quadratic equation whose roots are real and non conjugate Ans)  x^2-x+6=0 ...roots are real and non conjugate

Fraction, in a garden 1/8 of the flowers are tulips. 1/4 of the tulips are ...

in a garden 1/8 of the flowers are tulips. 1/4 of the tulips are rd. what fraction of the flowers in the garden are red tulips

Luis runs rate of 11.7 feet per second how far does he run, Luis runs at a ...

Luis runs at a rate of 11.7 feet per second. How far does he run in 5 seconds? You must multiply 11.7 by 5; 11.7 × 5 = 58.5. To multiply decimals, multiply generally, then coun

Geometry, how can you tell qhich trangle is sss,asa, sas, and aas s

how can you tell qhich trangle is sss,asa, sas, and aas s

Numbers, use the distributive law to write each multiplication in a differe...

use the distributive law to write each multiplication in a different way. the find the answer. 12x14 16x13 14x18 9x108 12x136 20x147

Solution Of Rectilinear Figures, Find the number of square feet of pavement...

Find the number of square feet of pavement required for the shaded portion of the streets shown in the figure, all the streets being 50 feet wide.

Find the volume of the cuboids, If the areas of three adjacent faces of cub...

If the areas of three adjacent faces of cuboid are x, y, z respectively, Find the volume of the cuboids. Ans: lb = x , bh = y, hl = z Volume of cuboid = lbh V 2 = l 2 b 2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd