Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

Union and intersection - set theory, Union and Intersection - Set theory ...

Union and Intersection - Set theory B ∩ C indicates the intersection of B and C. it is the set having all those elements that belong to both B and C If B = {5, 8, 11, 20, 2

Determine the probability - mean and standard deviation, The scores of stud...

The scores of students taking the ACT college entrance examination are normally distributed with a mean m = 20.1 and a standard deviation s = 5.8. A single student is selected a

Differntial equation, (3x+2)^2 d^2y/dx^2+3(3x+2)dy/dx-36y=3x^2+4x+1

(3x+2)^2 d^2y/dx^2+3(3x+2)dy/dx-36y=3x^2+4x+1

MAT201, #There is a balance of $1,234 and this person receive a refund chec...

#There is a balance of $1,234 and this person receive a refund check in the amount of $25 with her paycheck that was deposited into her account for $1500 which made her balance $27

Logarithmic form and exponential form, Logarithmic form and exponential for...

Logarithmic form and exponential form ; We'll begin with b = 0 , b ≠ 1. Then we have y= log b x          is equivalent to                  x= b y The first one is called

Triple integral transformed, An elliptical galaxy has gravitational boundar...

An elliptical galaxy has gravitational boundaries defiend by 9x 2 +16y 2 +144z 2 =144. A black hole at the center of the galaxy is interacting with dark matter producing a radiatio

MARKOV PROCESS, EXPLAIN HOW MARKOV PROCESS IS APPLIED IN BRAND SWITCHING?

EXPLAIN HOW MARKOV PROCESS IS APPLIED IN BRAND SWITCHING?

Ann, What was last years salary if after a 3% increase the salary is 35,020...

What was last years salary if after a 3% increase the salary is 35,020?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd