Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

Complex numbers, find the modulus Z=(2-i)(5+i12)/(1+i2)^3

find the modulus Z=(2-i)(5+i12)/(1+i2)^3

Example of normal distribution, The mathematics results of 20 first-year un...

The mathematics results of 20 first-year university students are given, together with their results of their performances in the year 12 semester Test and Final Assignment:

Evaluate subsequent proportion, Evaluate subsequent proportion: Examp...

Evaluate subsequent proportion: Example 2: If 5 pounds of apples cost 80 cents, how much will 7 pounds cost? Solution: By using x for the cost of 7 pounds of appl

Scalar multiplication - vector arithmetic, Scalar Multiplication - Vector a...

Scalar Multiplication - Vector arithmetic Another arithmetic operation that we wish to look at is scalar multiplication. Specified the vector a → = (a 1 , a 2 , a 3 ) and any

Geometry Question, Does the Angle-Side Relationship Theorm work for all tri...

Does the Angle-Side Relationship Theorm work for all triangles or just a certain type of triangle? Does is correspond with the orthocenter of a triangle?

Empty set, There is one final topic that we need to address as far as solut...

There is one final topic that we need to address as far as solution sets go before leaving this section. Consider the following equation and inequality.

Find a minimum cost spanning arborescence rooted, Find a minimum cost spann...

Find a minimum cost spanning arborescence rooted at r for the digraph shown below, using the final algorithm shown in class.  Please show your work, and also give a final diagram w

Using substitution solving polynomial equations, Using Substitution Solving...

Using Substitution Solving Polynomial Equations ? Solve : (x 3 + 4) 2 - 15 (x 3 + 4) + 36 = 0. You might be tempted to multiply everything out and factor. However, there

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd