Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

Geometry, in right angle triangle BAC.

in right angle triangle BAC.

Green''s funtion., show that the green''s function for x"=0,x(1)=0,x''(0)+x...

show that the green''s function for x"=0,x(1)=0,x''(0)+x''(1)=0 is G(t,s)=1-s

Marvin helping teachers plan trip what is the minimum no, Marvin is helping...

Marvin is helping his teachers plan a ?eld trip. There are 125 people going on the ?eld trip and each school bus holds 48 people. What is the minimum number of school buses they wi

World problem, Buses to Acton leave a bus station every 24 minutes. Buses t...

Buses to Acton leave a bus station every 24 minutes. Buses to Barton leave the same bus station every 20 minutes. A bus to Acton and a bus to Barton both leave the bus station at 9

Functions , For the layman, a "function" indicates a relationsh...

For the layman, a "function" indicates a relationship among objects. A function provides a model to describe a system. Economists refer to deman

How many ways can dvds be arranged on a shelf, How many ways can 4 DVDs be ...

How many ways can 4 DVDs be arranged on a shelf? Solution: There are 4 ways to choose the first DVD, 3 ways to choose the second, 2 ways to choose the third and 1 way to choo

Solve for, a)Solve for ?, if tan5? = 1. Ans:    Tan 5? = 1        ⇒ ? ...

a)Solve for ?, if tan5? = 1. Ans:    Tan 5? = 1        ⇒ ? =45/5 ⇒ ?=9 o . b)Solve for ? if S i n ?/1 + C os ? + 1 +  C os ?/ S i n ? = 4 . Ans:  S i n ?/1 +

Elimination technique of linear equations, What is the Elimination techniqu...

What is the Elimination technique of Linear Equations?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd