Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

Explain what is symmetry in maths, Symmetry Definition : A line of sy...

Symmetry Definition : A line of symmetry divides a set of points into two halves, each being a reflection of the other. Each image point is also a point of the set. Defin

Is this a sample statistic.., jenna asked 100 of her schoolmates if they ha...

jenna asked 100 of her schoolmates if they have had their first kiss and 43 of them said yes

Evaluate subsequent proportion, Evaluate subsequent proportion: Examp...

Evaluate subsequent proportion: Example 2: If 5 pounds of apples cost 80 cents, how much will 7 pounds cost? Solution: By using x for the cost of 7 pounds of appl

How many different combinations could she form these item, Wendy has 5 pair...

Wendy has 5 pairs of pants and 8 shirts. How many different combinations could she form with these items? Multiply the number of choices for each item to find out the number of

Student, #question. statistics

#question. statistics

How to calculate percentiles, Q. How to calculate Percentiles? Ans. ...

Q. How to calculate Percentiles? Ans. In a large group of standardized test scores we expect the scores to approximate a normal curve. If all scores are translated to z-s

Pattern, 1,5,14,30,55 find the next three numbers and the rule

1,5,14,30,55 find the next three numbers and the rule

Explain histogramsin details, Explain Histogramsin details? Another way...

Explain Histogramsin details? Another way to display frequencies is by using a histogram. The following is an example of a histogram using the data from the previous example:

Prove that the length of the altitude on the hypotenuse, If A be the area o...

If A be the area of a right triangle and b one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is 2  Ab /√ b 4 +4A 2 . An

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd