Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

Probablility, #question.find the number of combinations of the letters a, b...

#question.find the number of combinations of the letters a, b, c, and d taken 3 at a time.

Determine the equation of the line, Example :  Determine the equation of th...

Example :  Determine the equation of the line which passes through the point (8, 2) and is, parallel to the line given by 10 y+ 3x = -2 Solution In both of parts we are goi

What is the opec, What is the OPEC? - The Organization of the Petroleum Exp...

What is the OPEC? - The Organization of the Petroleum Exporting Countries, a coordination group of petrol producers The Organization for Peace and Economic Cooperation, a German le

determine that the relation is symmetric and transitive, 1. Let R and S be...

1. Let R and S be relations on a set A. For each statement, conclude whether it is true or false. In each case, provide a proof or a counterexample, whichever applies. (a) If R

Logarithmic function:solve for x: 4 log x2, Solve for x: 4 log x = log (15 ...

Solve for x: 4 log x = log (15 x 2 + 16) Solution:              x 4 - 15 x 2 - 16 = 0                (x 2 + 1)(x 2 - 16) = 0                x = ± 4   But log x is

Definition of a function, A function is a relation for which each of the va...

A function is a relation for which each of the value from the set the first components of the ordered pairs is related with exactly one value from the set of second components of t

Solving geometry using algebra, if one side of a square is increased 4 inch...

if one side of a square is increased 4 inches and an adjacement side is multiplied by 4, the perimeter of the resulting rectangle is 3 times the perimeter of the square. find the s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd