Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

each player selects one of her two remaining chips , Consider the followin...

Consider the following parlor game to be played between two players. Each player begins with three chips: one red, one white, and one blue. Each chip can be used only once. To beg

An amortization, Ahmad borrowed $450000.00 at 3% compounded semi-annually f...

Ahmad borrowed $450000.00 at 3% compounded semi-annually for ten years to buy an apartment. Equal payments are made at the end of every six months. a) Determine the size of the se

Find the sum of all 3 digit numbers which leave remainder 3, Find the sum o...

Find the sum of all 3 digit numbers which leave remainder 3 when divided by 5. Ans:    103, 108..........998   a + (n-1)d = 998

What is the difference in the two low temperatures, The low temperature in ...

The low temperature in Anchorage, Alaska present was -4°F. The low temperature in Los Angeles, California was 63°F. What is the difference in the two low temperatures? Visualiz

base - 10 block math, there are 5 small cubes and it reads the 5 small cub...

there are 5 small cubes and it reads the 5 small cubes is 1/100, then what is the ONE?

Estimation of difference among two means-illustration, A comparison of the ...

A comparison of the wearing out quality of two types of tyres was obtained by road testing. Samples of 100 tyres were collected. The miles traveled until wear out were recorded and

Fact of the wronskian method, Given two functions f(x) and g(x) which are d...

Given two functions f(x) and g(x) which are differentiable on some interval I  (1) If W (f,g) (x 0 ) ≠ 0 for some x 0 in I, so f(x) and g(x) are linearly independent on the int

Write the next two terms, Write the next two terms √12, √27, √48, √75.........

Write the next two terms √12, √27, √48, √75................... Ans:    next two terms √108 , √147 AP is 2 √3 , 3 √3 , 4 √3 , 5 √3 , 6 √3 , 7 √3 ......

Applications of integrals, Applications of Integrals In this part we're...

Applications of Integrals In this part we're going to come across at some of the applications of integration.  It should be noted also that these kinds of applications are illu

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd