Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

If 967.234 is divided by 10 how will the decimal point move, If 967.234 is ...

If 967.234 is divided by 10, how will the decimal point move? It will move one place to the left. While dividing by multiples of 10, the decimal point is moved to the left acco

Determine the function notation, Given f (x) = - x 2 + 6 x -11 determine e...

Given f (x) = - x 2 + 6 x -11 determine each of the following. (a)    f ( 2) (b)   f ( -10) (c)    f (t ) Solution (a)    f ( 2) = - ( 2) 2   + 6(2) -11 = -3 (

Show that of all right triangles inscribed in a circle, Show that of all ri...

Show that of all right triangles inscribed in a circle, the triangle with maximum perimeter is isosceles.

Operations research, Solve the following Linear Programming Problem using S...

Solve the following Linear Programming Problem using Simple method. Maximize Z= 3x1 + 2X2, Subject to the constraints: X1+ X2 = 4 X1+ X2 = 2 X1, X2 = 0

Inequalities, seven more than a number is less than or equal to -18

seven more than a number is less than or equal to -18

Completely factored polynomial, Factoring polynomials Factoring polynom...

Factoring polynomials Factoring polynomials is done in pretty much the similar manner.  We determine all of the terms which were multiplied together to obtain the given polynom

Focal chord of the parabola, show that the circle described on any focal c...

show that the circle described on any focal chord of the parabola touches the directrix

Compute the derivative, Write an octave program that will take a set of poi...

Write an octave program that will take a set of points {x k , f k } representing a function and compute the derivative at the same points x k using 1. 2-point forward di erence

Relative motion, how to find the minimum distance between any two particles...

how to find the minimum distance between any two particles which are in relative motion?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd