Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

Percentage, 7 is what percent of 105?.

7 is what percent of 105?.

Find the length of chord ab, If PA and PB are tangents to a circle from an ...

If PA and PB are tangents to a circle from an outside point P, such that PA=10cm and ∠APB=60 o . Find the length of chord AB.

Marketing, In a 2500 word report do the market analysis of China. Under thi...

In a 2500 word report do the market analysis of China. Under this you have to explain: - What are the advantages and disadvantages for foreign company to set up its business cent

Real numbers, how to present root numbers on a number line

how to present root numbers on a number line

Determine the permutation, There are 6 contestants for the post of chairman...

There are 6 contestants for the post of chairman secretary and treasurer. These positions can be filled by any of the 6. Find the possible no. of ways whether the 3 positions may b

Pearson sucess, do you have a decimal place value chart

do you have a decimal place value chart

What were her sales for the month of may of medical supplies, Kim is a medi...

Kim is a medical supplies salesperson. Each month she receives a 5% commission on all her sales of medical supplies up to $20,000 and 8.5% on her total sales over $20,000. Her tota

Decimals, how will the decimal point move when 245.398 is multiplied by 10

how will the decimal point move when 245.398 is multiplied by 10

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd