Differential equation to determine initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

cos(x) y' + sin(x) y = 2 cos3(x) sin(x) - 1

y(p/4) = 3√2, 0 < x< p/2

Solution:

Rewrite the differential equation to determine the coefficient of the derivative an individual.

y' + (sin(x)/cos(x))y = 2cos2 (x) sin(x) - 1/cos(x)

y' + tan(x)y = 2cos2 (x) sin(x) - sec(x)

Now determine the integrating factor:

1689_Differential equation to determine initial value problem.png

Can you do the integral? If not rewrite tangent back in sines and cosines and after that use a easy substitution. Remember that we could drop the absolute value bars upon the secant due to the limits on x.  Actually, this is the purpose for the limits on x.

Also remember that we made use of the subsequent fact.

eInf(x) = f(x)    .........................(11)

It is a significant fact that you must always keep in mind for these problems. We will want to make simpler the integrating factor as much as probable in each case and this fact will assist with which simplification.

Currently back to the illustration. Multiply the integrating factor by the differential equation and confirm the left side is a product rule. Notice also that we multiply the integrating factor by the rewritten differential equation and NOT the original differential equation. Ensure that you do that. If you multiply the integrating factor via the original differential equation you will find out the wrong solution!

sec(x) y' + sec(x) tan (x)y = 2sec(x) cos2(x) sin(x) - sec2(x)

(sec(x) y)' = 2cos(x) sin(x) -sec2(x)

Integrate both sides.

∫(sec(x) y)' dx = ∫(2cos(x) sin(x) -sec2(x)) dx

sec(x) y(x) = ∫ sin(2x) - sec2(x) dx

sec(x) y(x) = - ½  cos(2x) - tan(x) + c

See there the use of the trig formula sin (2q) = 2 sin q cosq resolve for the solution.

y(x) = - ½ cos(x) cos(2x) - cos(x) tan(x) + c cos(x)

= - ½ cos(x) cos(2x) - sin(x) + c cos(x)

At last, apply the initial condition to determine the value of c.

 

1146_Differential equation to determine initial value problem1.png

The solution is afterward as:

y(x) =  - ½ cos(x) cos(2x) - sin(x) + 7 cos(x)

A plot of the solution is here given below:

2202_Differential equation to determine initial value problem2.png


Related Discussions:- Differential equation to determine initial value problem

Decision-making under conditions of certainty, Decision-Making Under Condit...

Decision-Making Under Conditions of Certainty Conditions of certainty tend to be rare, especially when significant decisions are involved. Under conditions of certainty, decis

Abstract algebra, How many homomorphism are there from z2 to z3. Zn is grou...

How many homomorphism are there from z2 to z3. Zn is group modulo n

Critical points, Critical Point Definition : We say that x = c is a critic...

Critical Point Definition : We say that x = c is a critical point of function f(x) if f (c) exists & if either of the given are true. f ′ (c ) = 0        OR             f ′ (c

Which of the subsequent represents the cost y of phone call, A telephone co...

A telephone company charges $.35 for the first minute of a phone call and $.15 for each additional minute of the call. Which of the subsequent represents the cost y of a phone call

Amy purchased 6 books how much did the books cost altogether, Amy purchased...

Amy purchased 6 books at $4.79 each. How much did the books cost altogether? Multiply 6 by $4.79; 6 × $4.79 = $28.74.

Which of the subsequent decimals is the greatest number, Which of the subse...

Which of the subsequent decimals is the greatest number? If you add zeros to the end of every of the numbers so that each number has 5 places after the decimal point, it is sim

Which kevin gets paid is represented by x what does paid, Patrick gets paid...

Patrick gets paid three dollars less than four times what Kevin gets paid. If the number of dollars which Kevin gets paid is represented through x, what does Patrick get paid?

Linear equation, develop any two linear equation which are reducible into l...

develop any two linear equation which are reducible into linear form from our daily life by cross multiplication

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd