Differential equation and laplace transform, Mathematics

Assignment Help:

1. Solve the given differential equation, subject to the initial conditions:

. x2y''-3xy'+4y = 0

. y(1) = 5, y'(1) = 3

2. Find two linearly independent power series solutions for each differential equation about the ordinary point x=0

Y'' - xy' - (x+2)y=o

3. Use the definition of the Laplace Transform, to find

L{e-t cosht}

4. Find f(t) if : f(t)=L-1 

1050_maths.png

5. Solve : y'+y= f(t)

where: f(t) = { 1 if 0 ≤ t < 1

{-1 if t ≥ 1

Recall that if f(t) = { g(t) if 0 ≤ t < a

{ h(t) if t ≥ 1

Then f(t)=g(t)-g(t)u(t-a)+h(t)u(t-a)

6. y'(t) = cos t+

2074_maths1.png


Related Discussions:- Differential equation and laplace transform

Transpotation, how can you determine trasportation schedule that minimizes ...

how can you determine trasportation schedule that minimizes cost

Reason for why limits not existing, Reason for why limits not existing : I...

Reason for why limits not existing : In the previous section we saw two limits that did not.  We saw that did not exist since the function did not settle down to a sing

Find the equation for each of the two planes , Find the equation for each o...

Find the equation for each of the two planes that just touch the sphere (x - 1) 2 + (y - 4) 2 + (z - 2)2 = 36 and are parallel to the yz-plane. And give the points on the sphere

Example of infinite interval - improper integrals, Evaluate the subsequent ...

Evaluate the subsequent integral. Solution This is an innocent enough looking integral. Though, because infinity is not a real number we cannot just integrate as norm

Calculate one-sided limits, Calculate the value of the following limits. ...

Calculate the value of the following limits. Solution From the graph of this function illustrated below, We can illustrate that both of the one-sided limits suffer

surfaces z + |y| = 1, Describe and sketch the surfaces z + |y| = 1 and (x ...

Describe and sketch the surfaces z + |y| = 1 and (x   2) 2 y + z 2 = 0.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd