differential equation, Mathematics

Assignment Help:
Suppose a fluid (say, water) occupies a domain D? R^(3 ) and has velocity field V=V(x, t). A substance (say, a day) is suspended into the fluid and will be transported by the fluid as well as diffused within it; let u= u(x,t) be the concentration of the substance( mass per unit volume). Let Ø= Ø(x,t) be the concentration flux (mass per unit area per unit time, analogous to heat flux). Let B(x) be a ball of radius r > 0 contained in D. Derive the conservation law.

?_(B (x))¦u_(t ) dV= -?_(? B(x))¦?Ø.n_0 dS.?

Fick''s law for diffusion states that the concentration flux due to diffusion is proportional to the gradient of the concentration flux due to diffusion is proportional to the gradient of the concentration. Deduce that Ø= -k?+uV.
Apply the divergence theorem to the conservation law and substitute the flux formula to arrive at the diffusion- transport equation:
u_t= ?.(k?u)+ ?.(uV).
in the absence of diffusion (k=0), this is the higher- dimensional transport equation. If the fluid is motionless, it is called the diffusion equation.
Suppose a fluid (say, water) occupies a domain D? R^(3 ) and has velocity field V=V(x, t). A substance (say, a day) is suspended into the fluid and will be transported by the fluid as well as diffused within it; let u= u(x,t) be the concentration of the substance( mass per unit volume). Let Ø= Ø(x,t) be the concentration flux (mass per unit area per unit time, analogous to heat flux). Let B(x) be a ball of radius r > 0 contained in D. Derive the conservation law.

?_(B (x))¦u_(t ) dV= -?_(? B(x))¦?Ø.n_0 dS.?

Fick''s law for diffusion states that the concentration flux due to diffusion is proportional to the gradient of the concentration flux due to diffusion is proportional to the gradient of the concentration. Deduce that Ø= -k?+uV.
Apply the divergence theorem to the conservation law and substitute the flux formula to arrive at the diffusion- transport equation:
u_t= ?.(k?u)+ ?.(uV).
in the absence of diffusion (k=0), this is the higher- dimensional transport equation. If the fluid is motionless, it is called the diffusion equation.

Related Discussions:- differential equation

Calculate percentage of increasing customer, Coastal Cable had 1,440,000 cu...

Coastal Cable had 1,440,000 customers within January of 2002. During the first half of 2002 the company launched a large advertising campaign. Through the end of 2002 they had 1,80

5% sales tax on a basket what was the price of the basket, The 5% sales tax...

The 5% sales tax on a basket was $0.70. What was the price of the basket? Use a proportion to solve the problem; part/whole = %/100. The whole is the price of the basket (wh

Trigonometry, I am really stuck on this topic and other topics its extremel...

I am really stuck on this topic and other topics its extremely difficult and I dont know what to do Im stressing out help me please.

The median- graphical method -progression , The median - it is a stati...

The median - it is a statistical value which is usually located at the center of a given set of data that has been organized in the order of size or magnitude as illustrating,

Devision, how many times can u put 10000 into 999999

how many times can u put 10000 into 999999

Find var (3x+8) where x is a random variable, If Var(x) = 4, find Var (3x+8...

If Var(x) = 4, find Var (3x+8), where X is a random variable. Var (ax+b) = a 2 Var x Var (3x+8) = 3 2 Var x = 36

Method to solve binomials of second degree, In this part we look at a...

In this part we look at another method to obtain the factors of an expression. In the above you have seen that x 2 - 4x + 4 = (x - 2) 2 or (x - 2)(x - 2). If yo

Algebra, logrithim of function?

logrithim of function?

How to dividing rational expressions, How to Dividing Rational Expressions ...

How to Dividing Rational Expressions ? To divide two fractions, or rational expressions, keep in Mind that division is the same as multiply by the Reciprocal of the second fra

Limits, Limits The concept of a limit is fundamental in calculus....

Limits The concept of a limit is fundamental in calculus. Often, we are interested to know the behavior of f(x) as the independent variable x approaches some

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd