differential equation, Mathematics

Assignment Help:
Suppose a fluid (say, water) occupies a domain D? R^(3 ) and has velocity field V=V(x, t). A substance (say, a day) is suspended into the fluid and will be transported by the fluid as well as diffused within it; let u= u(x,t) be the concentration of the substance( mass per unit volume). Let Ø= Ø(x,t) be the concentration flux (mass per unit area per unit time, analogous to heat flux). Let B(x) be a ball of radius r > 0 contained in D. Derive the conservation law.

?_(B (x))¦u_(t ) dV= -?_(? B(x))¦?Ø.n_0 dS.?

Fick''s law for diffusion states that the concentration flux due to diffusion is proportional to the gradient of the concentration flux due to diffusion is proportional to the gradient of the concentration. Deduce that Ø= -k?+uV.
Apply the divergence theorem to the conservation law and substitute the flux formula to arrive at the diffusion- transport equation:
u_t= ?.(k?u)+ ?.(uV).
in the absence of diffusion (k=0), this is the higher- dimensional transport equation. If the fluid is motionless, it is called the diffusion equation.
Suppose a fluid (say, water) occupies a domain D? R^(3 ) and has velocity field V=V(x, t). A substance (say, a day) is suspended into the fluid and will be transported by the fluid as well as diffused within it; let u= u(x,t) be the concentration of the substance( mass per unit volume). Let Ø= Ø(x,t) be the concentration flux (mass per unit area per unit time, analogous to heat flux). Let B(x) be a ball of radius r > 0 contained in D. Derive the conservation law.

?_(B (x))¦u_(t ) dV= -?_(? B(x))¦?Ø.n_0 dS.?

Fick''s law for diffusion states that the concentration flux due to diffusion is proportional to the gradient of the concentration flux due to diffusion is proportional to the gradient of the concentration. Deduce that Ø= -k?+uV.
Apply the divergence theorem to the conservation law and substitute the flux formula to arrive at the diffusion- transport equation:
u_t= ?.(k?u)+ ?.(uV).
in the absence of diffusion (k=0), this is the higher- dimensional transport equation. If the fluid is motionless, it is called the diffusion equation.

Related Discussions:- differential equation

Evaluate inverse tangents , Evaluate following limits. Solution ...

Evaluate following limits. Solution Here the first two parts are actually just the basic limits including inverse tangents and can easily be found by verifying the fol

Find third order partial derivatives, Question: Find all third order pa...

Question: Find all third order partial derivatives for the function   F(x,y)= log xy+ e (x+y) -x/y.

The mean value theorem, The Mean Value Theorem : In this section we will ...

The Mean Value Theorem : In this section we will discuss the Mean Value Theorem.  Before we going through the Mean Value Theorem we have to cover the following theorem. Ro

Geometry, the segments shown could form a triangle

the segments shown could form a triangle

Market testing, what are the dangers of not market testing a product

what are the dangers of not market testing a product

Horizontal asymptotes, Horizontal asymptotes : Such as we can have vert...

Horizontal asymptotes : Such as we can have vertical asymptotes defined in terms of limits we can also have horizontal asymptotes explained in terms of limits. Definition

Course work2 , (b) The arity of an operator in propositional logic is the n...

(b) The arity of an operator in propositional logic is the number of propositional variables that it acts on – for example, binary operations (e.g, AND, OR, XOR…) act on two propo

Standardizing a random variable, Standardizing a Random Variable       ...

Standardizing a Random Variable       If X is a random variable with E(X) = m and V(X) = s 2 , then Y = (X – m)/ s is a random variable with mean 0 and standard deviatio

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd