differential equation, Mathematics

Assignment Help:
Suppose a fluid (say, water) occupies a domain D? R^(3 ) and has velocity field V=V(x, t). A substance (say, a day) is suspended into the fluid and will be transported by the fluid as well as diffused within it; let u= u(x,t) be the concentration of the substance( mass per unit volume). Let Ø= Ø(x,t) be the concentration flux (mass per unit area per unit time, analogous to heat flux). Let B(x) be a ball of radius r > 0 contained in D. Derive the conservation law.

?_(B (x))¦u_(t ) dV= -?_(? B(x))¦?Ø.n_0 dS.?

Fick''s law for diffusion states that the concentration flux due to diffusion is proportional to the gradient of the concentration flux due to diffusion is proportional to the gradient of the concentration. Deduce that Ø= -k?+uV.
Apply the divergence theorem to the conservation law and substitute the flux formula to arrive at the diffusion- transport equation:
u_t= ?.(k?u)+ ?.(uV).
in the absence of diffusion (k=0), this is the higher- dimensional transport equation. If the fluid is motionless, it is called the diffusion equation.
Suppose a fluid (say, water) occupies a domain D? R^(3 ) and has velocity field V=V(x, t). A substance (say, a day) is suspended into the fluid and will be transported by the fluid as well as diffused within it; let u= u(x,t) be the concentration of the substance( mass per unit volume). Let Ø= Ø(x,t) be the concentration flux (mass per unit area per unit time, analogous to heat flux). Let B(x) be a ball of radius r > 0 contained in D. Derive the conservation law.

?_(B (x))¦u_(t ) dV= -?_(? B(x))¦?Ø.n_0 dS.?

Fick''s law for diffusion states that the concentration flux due to diffusion is proportional to the gradient of the concentration flux due to diffusion is proportional to the gradient of the concentration. Deduce that Ø= -k?+uV.
Apply the divergence theorem to the conservation law and substitute the flux formula to arrive at the diffusion- transport equation:
u_t= ?.(k?u)+ ?.(uV).
in the absence of diffusion (k=0), this is the higher- dimensional transport equation. If the fluid is motionless, it is called the diffusion equation.

Related Discussions:- differential equation

General math, Kwai made 5 pints of iced tea. How many cups of tea did he ma...

Kwai made 5 pints of iced tea. How many cups of tea did he make?

Express the negation of the statement, States the negation of the statement...

States the negation of the statement ∀x ∃y (xy = 1) so that no negation precedes a quantifier. Ans: The negation of the following statement is written as ~ [∀x ∃y (xy = 1)]. An

Explain multiplying-dividing negative fractions, Explain Multiplying/Dividi...

Explain Multiplying/Dividing Negative Fractions? There are 3 steps to multiplying or dividing fractions. 1. If any negative signs are present, place them next to the numerator

Difererntial equation, Ask queFind the normalized differential equation whi...

Ask queFind the normalized differential equation which has {x, xex} as its fundamental setstion #Minimum 100 words accepted#

How many ways are there to seat these children, Question: (a) Suppose ...

Question: (a) Suppose that a cookie shop has four different kinds of cookies. Assuming that only the type of cookie, and not the individual cookies or the order in which they

Calculate the area and circumference of a circle, Calculate the area and ci...

Calculate the area and circumference of a circle: Calculate the area and circumference of a circle with a 3" radius.  Solution: A =      πr2

Actual solution to a differential equation, The actual solution is the spec...

The actual solution is the specific solution to a differential equation which not only satisfies the differential equation, although also satisfies the specified initial conditions

Determinant of an n×n matrix, How can we calculate the Determinant of an N×...

How can we calculate the Determinant of an N×N Matrix?

Quotient rule, Quotient Rule : If the two functions f(x) & g(x) are differ...

Quotient Rule : If the two functions f(x) & g(x) are differentiable (that means the derivative exist) then the quotient is differentiable and,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd