Differential calculus, Mathematics

Assignment Help:

lim n tends to infintiy ( {x} + {2x} + {3x}..... +{nx}/ n2(to the square) )where {X} denotes the fractional part of x?

Ans) all no.s are positive or 0. so limit is either positive or 0.........(1)

now {x}<=1;{2x}<=1;......

{x}+{2x}+....{nx}<=n

that implies lim n tends to infinity{x}+{2x}+....{nx}/n^2 <= lmit n tends to infinity n/n^2;

that means lim n tends to infinity{x}+{2x}+....{nx}/n^2 <= lmit n tends to infinity 1/n i.e. 0........(2)

from (1) and (2);

required limit=0;


Related Discussions:- Differential calculus

Show that the angles subtended at the centre , A circle touches the sides o...

A circle touches the sides of a quadrilateral ABCD at P, Q, R and S respectively. Show that the angles subtended at the centre by a pair of opposite sides are supplementary.

Polynomial : f(x).f(1/x), A polynomial satisfies the following relation f(x...

A polynomial satisfies the following relation f(x).f(1/x)= f(x)+f(1/x). f(2) = 33. fIND f(3) Ans) The required polynomial is x^5 +1. This polynomial satisfies the condition state

speed of the truck , A man travels 600km partly by train and partly by tru...

A man travels 600km partly by train and partly by truck. If he  covers 120km by train and the rest by truck, it takes him eight hours. But, if he travels 200km by train and the res

Derivative problem, we know that derivative of x 2 =2x. now we can write x...

we know that derivative of x 2 =2x. now we can write x 2 as x+x+x....(x times) then if we take defferentiation we get 1+1+1+.....(x times) now adding we get x . then which is wro

Calculate the volume and surface area of a cube, Calculate the volume and s...

Calculate the volume and surface area of a cube: Calculate the volume and surface area of a cube with a = 3".  Be sure to involved units in your answer. Solution: V =

Projectile, what is the greatest projection range down an inclined plane? h...

what is the greatest projection range down an inclined plane? how we will calculate that?

Find out arc length - applications of integrals, Find out the length of y =...

Find out the length of y = ln(sec x ) between 0 x π/4. Solution In this example we'll need to use the first ds as the function is in the form y = f (x). So, let us g

Prove that sec2+cosec2 can never be less than 2, Prove that sec 2 θ+cosec 2...

Prove that sec 2 θ+cosec 2 θ can never be less than 2. Ans:    S.T Sec 2 θ + Cosec 2 θ can never be less than 2. If possible let it be less than 2. 1 + Tan 2 θ + 1 + Cot

Definition of limit, Definition of limit : Consider that the limit of f(x)...

Definition of limit : Consider that the limit of f(x) is L as x approaches a & write this as provided we can make f(x) as close to L as we desire for all x adequately clos

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd