Differential calculus, Mathematics

Assignment Help:

lim n tends to infintiy ( {x} + {2x} + {3x}..... +{nx}/ n2(to the square) )where {X} denotes the fractional part of x?

Ans) all no.s are positive or 0. so limit is either positive or 0.........(1)

now {x}<=1;{2x}<=1;......

{x}+{2x}+....{nx}<=n

that implies lim n tends to infinity{x}+{2x}+....{nx}/n^2 <= lmit n tends to infinity n/n^2;

that means lim n tends to infinity{x}+{2x}+....{nx}/n^2 <= lmit n tends to infinity 1/n i.e. 0........(2)

from (1) and (2);

required limit=0;


Related Discussions:- Differential calculus

Example of inflection point-differential equation, Example of inflection po...

Example of inflection point Determine the points of inflection on the curve of the function y = x 3 Solution The only possible inflexion points will happen where

Travel time, you are driving on a freeway to a tour that is 500 kilometers ...

you are driving on a freeway to a tour that is 500 kilometers from your home. after 30 minutes , you pass a freeway exit that you know is 50 kilometer from your home. assuming that

Course work2 , (b) The arity of an operator in propositional logic is the n...

(b) The arity of an operator in propositional logic is the number of propositional variables that it acts on – for example, binary operations (e.g, AND, OR, XOR…) act on two propo

QM II, A HOSPITAL CURRENTLY ORDERS SALINE AT THE BEGINNING OF EACH MONTH. T...

A HOSPITAL CURRENTLY ORDERS SALINE AT THE BEGINNING OF EACH MONTH. THIS MONTH, THEY HAD 178 BAGS OF SALINE IN STOCK AND ORDERED 1,277 BAGS. DEMAND FOR SALINE IS NORMALLY DISTRIBUTE

Vectors, why minimum three coplanar vectors are required to give zero resul...

why minimum three coplanar vectors are required to give zero resultant and not two?

Differentiate outline function in chain rules, Differentiate following. ...

Differentiate following. Solution : It requires the product rule & each derivative in the product rule will need a chain rule application as well. T ′ ( x ) =1/1+(2x) 2

Evaluate the linear equation, Evaluate the linear equation: Solve the ...

Evaluate the linear equation: Solve the equation ax - b = c for x in terms of a, b, and c. Solution: Step 1. Using Axiom 1, add b to both sides of the equation. a

Curvature - three dimensional space, Curvature - Three Dimensional Space ...

Curvature - Three Dimensional Space In this part we want to briefly discuss the curvature of a smooth curve (remind that for a smooth curve we require → r′ (t) is continuou

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd