Develop a linear program, Mathematics

Assignment Help:

The production manager of Koulder Refrigerators must decide how many refrigerators to produce in each of the next four months to meet demand at the lowest overall cost. There is a limited capacity in each month although this will increase in month 3.  Due to a new contract, costs are expected to increase.  The relevant information is provided in the table below.

Month

Capacity

Demand

Cost of production

1

140

110

$80 per unit

2

140

150

$85 per unit

3

160

130

$90 per unit

4

160

140

$95 per unit

Each item that is left at the end of the month and carried over to the next month incurs a carrying cost equal to 10% of the unit cost in that month (e.g. anything left in inventory at the end of month one incurs an $8 cost). Management wants to have at least 30 units left at the end of month four to meet any unexpected demand at that time. A linear program has been developed to help with this. However, this may or may not be totally correct. You should verify that it is the correct formulation before solving the problem. If it is not correct, make any necessary changes to the linear program before solving it on the computer.

X1 = number of units produced in month 1;  X2 = number of units produced in month 2; 

X3 = number of units produced in month 3; X4 = number of units produced in month 4;

N1 = number of units left at end of month 1; N2 = number of units left at end of month 2;

N3 = number of units left at end of month 3; N4 = number of units left at end of month 4

Minimize cost = 80X1 + 85X2 + 90X3 + 95X4+ 8N1 + 8.5N2 + 9N3+ 9.5N34

X1< 140

X2< 140

X3< 160

X4< 160

X1 = 110 + N1

X2 + N1 = 150 + N2

X3 + N2 = 130 + N3

X4 + N3 = 140 + N4

N4>30

All variables > 0


Related Discussions:- Develop a linear program

Calculus, Given f (x) =10x^3 - x^5 , find all intervals(in Interval Notatio...

Given f (x) =10x^3 - x^5 , find all intervals(in Interval Notation) of Concavity and the x-values of all Inflection Points.

Find k to three decimal places, The population of a city is observed as gro...

The population of a city is observed as growing exponentially according to the function P(t) = P0 e kt , where the population doubled in the first 50 years. (a) Find k to three

Real exponents, It is a fairly short section.  It's real purpose is to ackn...

It is a fairly short section.  It's real purpose is to acknowledge that the exponent properties work for any exponent.  We've already used them on integer and rational exponents al

Linear programming, Chelsea has been facing some financial problems which e...

Chelsea has been facing some financial problems which even caused her daily expenses for food, at the same time, she hasn''t receive the money from the bank loan yet. Therefore, sh

Critical points, Critical Point Definition : We say that x = c is a critic...

Critical Point Definition : We say that x = c is a critical point of function f(x) if f (c) exists & if either of the given are true. f ′ (c ) = 0        OR             f ′ (c

Learn, how to find basic intrest problems

how to find basic intrest problems

What is the width of the walkway in feet, A garden in the shape of a rectan...

A garden in the shape of a rectangle is surrounded through a walkway of uniform width. The dimensions of the garden only are 35 by 24. The field of the garden and the walkway toget

Example of fractional equations, Example of Fractional Equations: Exa...

Example of Fractional Equations: Example: Solve the fractional equation (3x +8)/x +5 =0 Solution: Multiply both sides of the equation by the LCD (x). (x) ((3x

Liner regression, Liner Regression The calculations for our sample siz...

Liner Regression The calculations for our sample size n = 10 are described below. The linear regression model is y = a + bx Table: Distance x miles

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd