Determine y' for xy = 1 by implicit differentiation, Mathematics

Assignment Help:

Determine y′ for xy = 1 .

Solution : There are in fact two solution methods for this problem.

Solution 1: It is the simple way of doing the problem.  Just solve for y to obtain the function in the form which we're utilized to dealing with and then differentiate.

y = 1/x ⇒             y′ = - 1/x2

Hence, that's easy sufficient to do.  However, there are some functions for which it can't be done. That's where second solution method comes to play.

Solution 2 (through implicit differentiation):

In this we're going to leave the function in the form which we were given & work with it in that form.  Though, let's recall from the first part of this solution that if we could solve out for y then we will get y like a function of x.  In other terms, if we could solve out for y (as we could in this case, however won't always be capable to do) we get y = y (x).  Let's rewrite the equation to note down this.

                                          xy = x y ( x ) = 1

Be careful here and note down that while we write y ( x ) we don't mean y times x.  What we are noting at this time is that y is some (probably unknown) function of x. It is important to recall while doing this solution technique.

In this solution the next step is to differentiate both sides w.r.t. x as follows,

                                 d ( x y ( x ))/ dx = d (1)/ dx

The right side is simple.  It's just the derivative of constant. The left side is also simple, but we've got to identify that we've in fact got a product here, the x and they ( x ) .  Thus to do the derivative of the left side we'll have to do the product rule.  By doing this gives,

 (1) y ( x ) + x d ( y ( x )) /dx= 0

Now, recall that we have the given notational way of writing the derivative.

d ( y ( x )) / dx = dy/ dx = y′

By using this we get the following,

y + xy′ = 0

Note as well that we dropped the ( x ) on the y as it was just there to remind us that the y was a function of x & now that we've taken the derivative it's no longer needed really. We just desired it in the equation to identify the product rule while we took the derivative.

thus, let's now recall just what were we after. We were after the derivative,  y′ , and notice that there is now a  y′ in the equation.  Thus, to get the derivative all that we have to do is solve the equation for  y′ .

                                                                   y′ = - y/ x

There it is. By using the second solution technique it is our answer. It is not similar with the first solution however. Or at least it doesn't look like the similar derivative that we got from the first solution.  However, recall that we actually do know what y is in terms of x and if we plug that in we will get,

                                            y′ = -       (1/x) /x= -1/ x2

that is what we got from the first solution.  Regardless of the solution technique utilized we should get the same derivative.


Related Discussions:- Determine y' for xy = 1 by implicit differentiation

Find no. of diagonals, In a polygon no 3 diagnols are concurrent. If the to...

In a polygon no 3 diagnols are concurrent. If the total no of points of intersection are 70 ( interior ). find the no. of diagnols? Ans) Since no 3 diagonals are concurrent, There

Simultaneous equations, i need a step by step guide to answering simultaneo...

i need a step by step guide to answering simultaneous equation for gcses

Truth criteria-nature of mathematics, Truth Criteria :  Consider the follo...

Truth Criteria :  Consider the following statements: i) Peahens (i.e., female peacocks) lay eggs around September. ii) Water boils at 100°C. iii) 5 divides 15 without lea

Equation of the plane x + 4y 3z = 1, Find the equation of the plane thro...

Find the equation of the plane through (2, 1, 0) and parallel to x + 4y   3z = 1.

The mode -measures of central tendency, The mode - It is one of the me...

The mode - It is one of the measures of central tendency. The mode is defined as a value in a frequency distribution that has the highest frequency. Occasionally a single valu

Launching of a new product, Launching a new product (Blackberry Cube) Analy...

Launching a new product (Blackberry Cube) Analysis (target market) Product features Promotions and advertisement sample design (location)

Draw a common graph f ( x ) = |x|, Graph f ( x ) = |x| Solution The...

Graph f ( x ) = |x| Solution There actually isn't much to in this problem outside of reminding ourselves of what absolute value is. Remember again that the absolute value f

Estimate round to the nearest tenth of an inch, One inch equals 2.54 centim...

One inch equals 2.54 centimeters. The dimensions of a table made in Europe are 85 cm huge by 120 cm long. What is the width of the table in inches? Round to the nearest tenth of an

Triple integrals, Consider a circular disc of radius 1 and thickness 1 whic...

Consider a circular disc of radius 1 and thickness 1 which has a uniform density 10 ?(x, y, z) = 1. (a) Find the moment of inertia of this disc about its central axis (that is, the

If tana+sina=m and tana-sina=n, If tanA+sinA=m and tanA-sinA=n, show that m...

If tanA+sinA=m and tanA-sinA=n, show that m 2 -n 2 = 4√mn Ans:    TanA + SinA = m       TanA - SinA = n. m 2 -n 2 =4√mn . m 2 -n 2 = (TanA + SinA) 2 -(TanA - SinA) 2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd