Determine y' for xy = 1 by implicit differentiation, Mathematics

Assignment Help:

Determine y′ for xy = 1 .

Solution : There are in fact two solution methods for this problem.

Solution 1: It is the simple way of doing the problem.  Just solve for y to obtain the function in the form which we're utilized to dealing with and then differentiate.

y = 1/x ⇒             y′ = - 1/x2

Hence, that's easy sufficient to do.  However, there are some functions for which it can't be done. That's where second solution method comes to play.

Solution 2 (through implicit differentiation):

In this we're going to leave the function in the form which we were given & work with it in that form.  Though, let's recall from the first part of this solution that if we could solve out for y then we will get y like a function of x.  In other terms, if we could solve out for y (as we could in this case, however won't always be capable to do) we get y = y (x).  Let's rewrite the equation to note down this.

                                          xy = x y ( x ) = 1

Be careful here and note down that while we write y ( x ) we don't mean y times x.  What we are noting at this time is that y is some (probably unknown) function of x. It is important to recall while doing this solution technique.

In this solution the next step is to differentiate both sides w.r.t. x as follows,

                                 d ( x y ( x ))/ dx = d (1)/ dx

The right side is simple.  It's just the derivative of constant. The left side is also simple, but we've got to identify that we've in fact got a product here, the x and they ( x ) .  Thus to do the derivative of the left side we'll have to do the product rule.  By doing this gives,

 (1) y ( x ) + x d ( y ( x )) /dx= 0

Now, recall that we have the given notational way of writing the derivative.

d ( y ( x )) / dx = dy/ dx = y′

By using this we get the following,

y + xy′ = 0

Note as well that we dropped the ( x ) on the y as it was just there to remind us that the y was a function of x & now that we've taken the derivative it's no longer needed really. We just desired it in the equation to identify the product rule while we took the derivative.

thus, let's now recall just what were we after. We were after the derivative,  y′ , and notice that there is now a  y′ in the equation.  Thus, to get the derivative all that we have to do is solve the equation for  y′ .

                                                                   y′ = - y/ x

There it is. By using the second solution technique it is our answer. It is not similar with the first solution however. Or at least it doesn't look like the similar derivative that we got from the first solution.  However, recall that we actually do know what y is in terms of x and if we plug that in we will get,

                                            y′ = -       (1/x) /x= -1/ x2

that is what we got from the first solution.  Regardless of the solution technique utilized we should get the same derivative.


Related Discussions:- Determine y' for xy = 1 by implicit differentiation

Sketch the graph, Sketch the graph of                          y = ( x -...

Sketch the graph of                          y = ( x -1) 2  - 4 . Solution Now, it is a parabola .Though, we haven't gotten that far yet and thus we will have to select

Forced - damped vibrations, It is the full blown case where we consider eve...

It is the full blown case where we consider every final possible force which can act on the system. The differential equation in this case, Mu'' + γu'  + ku = F( t) The displ

Solve sin (a /7) =0 trig function, Solve sin (α /7) =0 . Solution B...

Solve sin (α /7) =0 . Solution By Using a unit circle it isn't too difficult to see that the solutions to this equation are, α /7 = 0 + 2 ? n     ⇒   α = 14 ? n

Fractions, how can I compare fractions with unlike denominators?

how can I compare fractions with unlike denominators?

Find out the length of the parametric curve, Find out the length of the par...

Find out the length of the parametric curve illustrated by the following parametric equations. x = 3sin (t) y = 3 cos (t) 0 ≤ t ≤ 2? Solution We make out that thi

Diffrentiation, y=f(a^x)   and f(sinx)=lnx find dy/dx Solution) dy/dx...

y=f(a^x)   and f(sinx)=lnx find dy/dx Solution) dy/dx = (a^x)(lnx)f''(a^x), .........(1) but f(sinx) = lnx implies f(x) = ln(arcsinx) hence f''(x) = (1/arcsinx) (1/ ( ( 1-x

Trigonometry, important trigonometric formulas for class 10th CBSC board

important trigonometric formulas for class 10th CBSC board

Trigonometry, 1-tan^2 A/1+tan^2 = cos A - sinA/cos A

1-tan^2 A/1+tan^2 = cos A - sinA/cos A

Evaluate integrals (1 - (1 /w) cos (w - ln w) dw, Evaluate following integr...

Evaluate following integrals.                       ( (1 - (1 /w) cos (w - ln w) dw Solution In this case we know how to integrate only a cosine therefore let's makes th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd