Determine y' for xy = 1 by implicit differentiation, Mathematics

Assignment Help:

Determine y′ for xy = 1 .

Solution : There are in fact two solution methods for this problem.

Solution 1: It is the simple way of doing the problem.  Just solve for y to obtain the function in the form which we're utilized to dealing with and then differentiate.

y = 1/x ⇒             y′ = - 1/x2

Hence, that's easy sufficient to do.  However, there are some functions for which it can't be done. That's where second solution method comes to play.

Solution 2 (through implicit differentiation):

In this we're going to leave the function in the form which we were given & work with it in that form.  Though, let's recall from the first part of this solution that if we could solve out for y then we will get y like a function of x.  In other terms, if we could solve out for y (as we could in this case, however won't always be capable to do) we get y = y (x).  Let's rewrite the equation to note down this.

                                          xy = x y ( x ) = 1

Be careful here and note down that while we write y ( x ) we don't mean y times x.  What we are noting at this time is that y is some (probably unknown) function of x. It is important to recall while doing this solution technique.

In this solution the next step is to differentiate both sides w.r.t. x as follows,

                                 d ( x y ( x ))/ dx = d (1)/ dx

The right side is simple.  It's just the derivative of constant. The left side is also simple, but we've got to identify that we've in fact got a product here, the x and they ( x ) .  Thus to do the derivative of the left side we'll have to do the product rule.  By doing this gives,

 (1) y ( x ) + x d ( y ( x )) /dx= 0

Now, recall that we have the given notational way of writing the derivative.

d ( y ( x )) / dx = dy/ dx = y′

By using this we get the following,

y + xy′ = 0

Note as well that we dropped the ( x ) on the y as it was just there to remind us that the y was a function of x & now that we've taken the derivative it's no longer needed really. We just desired it in the equation to identify the product rule while we took the derivative.

thus, let's now recall just what were we after. We were after the derivative,  y′ , and notice that there is now a  y′ in the equation.  Thus, to get the derivative all that we have to do is solve the equation for  y′ .

                                                                   y′ = - y/ x

There it is. By using the second solution technique it is our answer. It is not similar with the first solution however. Or at least it doesn't look like the similar derivative that we got from the first solution.  However, recall that we actually do know what y is in terms of x and if we plug that in we will get,

                                            y′ = -       (1/x) /x= -1/ x2

that is what we got from the first solution.  Regardless of the solution technique utilized we should get the same derivative.


Related Discussions:- Determine y' for xy = 1 by implicit differentiation

What is the new price of the coat, An $80.00 coat is marked down 20%. It do...

An $80.00 coat is marked down 20%. It does not sell, so the shop owner marks it down an additional 15%. What is the new price of the coat? Find out 20 percent of the original p

Calculate the probability, Given the following decision tree, perform the t...

Given the following decision tree, perform the tasks listed below  1. Simulate the route through the test market and produce results for twenty simulations, calculating the

Indeterminate form, Indeterminate form : The 0/0 we initially got is calle...

Indeterminate form : The 0/0 we initially got is called an indeterminate form. It means that we don't actually know what it will be till we do some more work.  In the denominator

Limit, limit x APProaches infinity (1+1/x)x=e

limit x APProaches infinity (1+1/x)x=e

Algebra, Manuel is a cross-country runner for his school’s team. He jogged ...

Manuel is a cross-country runner for his school’s team. He jogged along the perimeter of a rectangular field at his school. The track is a rectangle that has a length that is 3 tim

What is the opec, What is the OPEC? - The Organization of the Petroleum Exp...

What is the OPEC? - The Organization of the Petroleum Exporting Countries, a coordination group of petrol producers The Organization for Peace and Economic Cooperation, a German le

Method of reduction of order, Consider the equation x 2 y′′+ xy′- y = 4x...

Consider the equation x 2 y′′+ xy′- y = 4x ln x (a) Verify that x is a solution to the homogeneous equation. (b) Use the method of reduction of order to derive the second

Chain rule, Chain Rule :   If f(x) and g(x) are both differentiable func...

Chain Rule :   If f(x) and g(x) are both differentiable functions and we describe F(x) = (f. g)(x) so the derivative of F(x) is F′(x) = f ′(g(x)) g′(x).  Proof We will s

Finite math, Find the present value of an ordinary annuity which has paymen...

Find the present value of an ordinary annuity which has payments of 2300 per year for 15 years at 6% compounded annually

PROBLEM SOLVING, The perimeter of a rectangular swimming pool is 60m. The l...

The perimeter of a rectangular swimming pool is 60m. The length of the pool is 4 m more than the width. What is the width of the pool?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd