Determine y' for xy = 1 by implicit differentiation, Mathematics

Assignment Help:

Determine y′ for xy = 1 .

Solution : There are in fact two solution methods for this problem.

Solution 1: It is the simple way of doing the problem.  Just solve for y to obtain the function in the form which we're utilized to dealing with and then differentiate.

y = 1/x ⇒             y′ = - 1/x2

Hence, that's easy sufficient to do.  However, there are some functions for which it can't be done. That's where second solution method comes to play.

Solution 2 (through implicit differentiation):

In this we're going to leave the function in the form which we were given & work with it in that form.  Though, let's recall from the first part of this solution that if we could solve out for y then we will get y like a function of x.  In other terms, if we could solve out for y (as we could in this case, however won't always be capable to do) we get y = y (x).  Let's rewrite the equation to note down this.

                                          xy = x y ( x ) = 1

Be careful here and note down that while we write y ( x ) we don't mean y times x.  What we are noting at this time is that y is some (probably unknown) function of x. It is important to recall while doing this solution technique.

In this solution the next step is to differentiate both sides w.r.t. x as follows,

                                 d ( x y ( x ))/ dx = d (1)/ dx

The right side is simple.  It's just the derivative of constant. The left side is also simple, but we've got to identify that we've in fact got a product here, the x and they ( x ) .  Thus to do the derivative of the left side we'll have to do the product rule.  By doing this gives,

 (1) y ( x ) + x d ( y ( x )) /dx= 0

Now, recall that we have the given notational way of writing the derivative.

d ( y ( x )) / dx = dy/ dx = y′

By using this we get the following,

y + xy′ = 0

Note as well that we dropped the ( x ) on the y as it was just there to remind us that the y was a function of x & now that we've taken the derivative it's no longer needed really. We just desired it in the equation to identify the product rule while we took the derivative.

thus, let's now recall just what were we after. We were after the derivative,  y′ , and notice that there is now a  y′ in the equation.  Thus, to get the derivative all that we have to do is solve the equation for  y′ .

                                                                   y′ = - y/ x

There it is. By using the second solution technique it is our answer. It is not similar with the first solution however. Or at least it doesn't look like the similar derivative that we got from the first solution.  However, recall that we actually do know what y is in terms of x and if we plug that in we will get,

                                            y′ = -       (1/x) /x= -1/ x2

that is what we got from the first solution.  Regardless of the solution technique utilized we should get the same derivative.


Related Discussions:- Determine y' for xy = 1 by implicit differentiation

Metric space, Assume that (X, d) is a metric space and let (x1, : : : , x n...

Assume that (X, d) is a metric space and let (x1, : : : , x n ) be a nite set of pointsof X. Elustrate , using only the de nition of open, that the set X\(x1, : : : , x n ) obtain

Characteristics of exponential smoothing, Characteristics of Exponential Sm...

Characteristics of Exponential Smoothing 1. More weight is described to the most recent data. 2. All past data are incorporated not like in moving averages. 3. Les

Derive the hicksian demand function using indirect utility , (a) Derive the...

(a) Derive the Marshalian demand functions and the indirect utility function for the following utility function: u(x1, x2, x3) = x1 1/6 x2 1/6 x3 1/6    x1≥ 0, x2≥0,x3≥ 0

Permuation and combination, how many words can be formed from letters of wo...

how many words can be formed from letters of word daughter such that word contain 2vowles and 3consonant

Operation research, can u suggest me topics for phd in or for any industrie...

can u suggest me topics for phd in or for any industries

Find the value of x of eagle , A fox and an eagle lived at the top of a cli...

A fox and an eagle lived at the top of a cliff of height 6m, whose base was at a distance of 10m from a point A on the ground. The fox descends the cliff and went straight to the p

Limits, lim(x->0) xln²(xln(x))

lim(x->0) xln²(xln(x))

Find out a if f(x) is continuous at x = -2 , Example   Given the graph of ...

Example   Given the graph of f(x), illustrated below, find out if f(x) is continuous at x = -2 , x = 0 , and x = 3 . Solution To give answer of the question for each

Integration, Awhat is the meaning and application sk question #Minimum 100 ...

Awhat is the meaning and application sk question #Minimum 100 words accepted#

What is the greatest value of the number, Five more than the quotient of a ...

Five more than the quotient of a number and 2 is at least that number. What is the greatest value of the number? Let x = the number. Notice that quotient is a key word for div

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd